{ "cells": [ { "cell_type": "markdown", "id": "e0a0c11e-f954-4a25-821e-af48a595a944", "metadata": { "tags": [] }, "source": [ "# Human Interactions\n", "\n", "IN THE SPACE BELOW, WRITE OUT IN FULL AND THEN SIGN THE HONOR PLEDGE:\n", "\n", "“I pledge my honor that I have not violated the honor code during this examination.”\n", "\n", "**PRINT NAME**: \n", "\n", "If a fellow student has contributed significantly to this work, please acknowledge them here:\n", "\n", "**Peer(s)**: \n", "\n", "*Contribution:*\n", "\n", "\n", "By uploading this assignment through Canvas, I sign off on the document below electronically.\n", "\n", "----" ] }, { "cell_type": "markdown", "id": "1f891def-3a54-40d0-b140-5f3320a03fd1", "metadata": { "tags": [] }, "source": [ "## Part I: A modified ranking of costly disasters\n", "\n", "The following table list some recent natural disasters, and the estimated economic losses in the affected country. The economic losses are often hard to estimate, so these are approximate values.\n", "\n", "|Year|Event |Country |Economic loss|\n", "|----|-------------------------|--------|-------------|\n", "|2010|Port-au-Prince Earthquake|Haiti | \\$3 billion|\n", "|2014|Laudian Earthquake |China | \\$10 billion|\n", "|2005|Hurricane Katrina |USA |\\$150 billion|\n", "|2011|M9.1 Earthquake |Japan |\\$200 billion|\n", "|2012|Hurricane Sandy |USA |\\$150 billion|\n", "|1998|Hurricane Mitch |Honduras| \\$4 billion|" ] }, { "cell_type": "markdown", "id": "f65a64ed-62d9-4461-b194-2916a10bd13b", "metadata": {}, "source": [ "We will rank the severity of the disasters based on the economic losses compared with the national wealth, estimated as their gross domestic products (GDPs, [Wikipedia](https://en.wikipedia.org/wiki/Gross_domestic_product)). Here is an example on how to read a `.csv` file and access the data using a `pandas` Dataframe." ] }, { "cell_type": "code", "execution_count": 1, "id": "5c8b0710-57f9-457c-a05a-28fae38725ad", "metadata": { "tags": [] }, "outputs": [], "source": [ "# import these packages when you read .csv file\n", "import pandas as pd\n", "\n", "# this one is only for making interactive plots. You do not need to import this.\n", "import plotly.express as px" ] }, { "cell_type": "code", "execution_count": 2, "id": "fd7a4be2-6237-4eba-b5ac-3bb928c4bfd9", "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Country NameCountry CodeIndicator NameIndicator Code196019611962196319641965...2012201320142015201620172018201920202021
0TuvaluTUVGDP (current US$)NY.GDP.MKTP.CDNaNNaNNaNNaNNaNNaN...3.934562e+073.861749e+073.875969e+073.681166e+074.162950e+074.521766e+074.781829e+075.422315e+075.505471e+076.310096e+07
1NauruNRUGDP (current US$)NY.GDP.MKTP.CDNaNNaNNaNNaNNaNNaN...9.692720e+079.849184e+071.046544e+088.652966e+079.972339e+071.093597e+081.240214e+081.187241e+081.146266e+081.332189e+08
2KiribatiKIRGDP (current US$)NY.GDP.MKTP.CDNaNNaNNaNNaNNaNNaN...1.896301e+081.845507e+081.778623e+081.702910e+081.785098e+081.881921e+081.962306e+081.779353e+081.809118e+08NaN
3Marshall IslandsMHLGDP (current US$)NY.GDP.MKTP.CDNaNNaNNaNNaNNaNNaN...1.804363e+081.848404e+081.821428e+081.838143e+082.015109e+082.132041e+082.215889e+082.394622e+082.444624e+082.486656e+08
4PalauPLWGDP (current US$)NY.GDP.MKTP.CDNaNNaNNaNNaNNaNNaN...2.123978e+082.211172e+082.416698e+082.804577e+082.983000e+082.853000e+082.847000e+082.742000e+082.577000e+08NaN
..................................................................
261Sint Maarten (Dutch part)SXMGDP (current US$)NY.GDP.MKTP.CDNaNNaNNaNNaNNaNNaN...9.858659e+081.022905e+091.245251e+091.253073e+091.263687e+091.191620e+091.185475e+09NaNNaNNaN
262Syrian Arab RepublicSYRGDP (current US$)NY.GDP.MKTP.CD8.577044e+089.452450e+081.110566e+091.200447e+091.339494e+091.329842e+09...4.411780e+102.255247e+102.207599e+101.762206e+101.245346e+101.634067e+102.144578e+10NaNNaNNaN
263TurkmenistanTKMGDP (current US$)NY.GDP.MKTP.CDNaNNaNNaNNaNNaNNaN...3.516421e+103.919754e+104.352421e+103.579971e+103.616943e+103.792629e+104.076543e+104.523143e+10NaNNaN
264Venezuela, RBVENGDP (current US$)NY.GDP.MKTP.CD7.779091e+098.189091e+098.946970e+099.753333e+098.099318e+098.427778e+09...3.812860e+113.710050e+114.823590e+11NaNNaNNaNNaNNaNNaNNaN
265British Virgin IslandsVGBGDP (current US$)NY.GDP.MKTP.CDNaNNaNNaNNaNNaNNaN...NaNNaNNaNNaNNaNNaNNaNNaNNaNNaN
\n", "

266 rows × 66 columns

\n", "
" ], "text/plain": [ " Country Name Country Code Indicator Name \\\n", "0 Tuvalu TUV GDP (current US$) \n", "1 Nauru NRU GDP (current US$) \n", "2 Kiribati KIR GDP (current US$) \n", "3 Marshall Islands MHL GDP (current US$) \n", "4 Palau PLW GDP (current US$) \n", ".. ... ... ... \n", "261 Sint Maarten (Dutch part) SXM GDP (current US$) \n", "262 Syrian Arab Republic SYR GDP (current US$) \n", "263 Turkmenistan TKM GDP (current US$) \n", "264 Venezuela, RB VEN GDP (current US$) \n", "265 British Virgin Islands VGB GDP (current US$) \n", "\n", " Indicator Code 1960 1961 1962 1963 \\\n", "0 NY.GDP.MKTP.CD NaN NaN NaN NaN \n", "1 NY.GDP.MKTP.CD NaN NaN NaN NaN \n", "2 NY.GDP.MKTP.CD NaN NaN NaN NaN \n", "3 NY.GDP.MKTP.CD NaN NaN NaN NaN \n", "4 NY.GDP.MKTP.CD NaN NaN NaN NaN \n", ".. ... ... ... ... ... \n", "261 NY.GDP.MKTP.CD NaN NaN NaN NaN \n", "262 NY.GDP.MKTP.CD 8.577044e+08 9.452450e+08 1.110566e+09 1.200447e+09 \n", "263 NY.GDP.MKTP.CD NaN NaN NaN NaN \n", "264 NY.GDP.MKTP.CD 7.779091e+09 8.189091e+09 8.946970e+09 9.753333e+09 \n", "265 NY.GDP.MKTP.CD NaN NaN NaN NaN \n", "\n", " 1964 1965 ... 2012 2013 \\\n", "0 NaN NaN ... 3.934562e+07 3.861749e+07 \n", "1 NaN NaN ... 9.692720e+07 9.849184e+07 \n", "2 NaN NaN ... 1.896301e+08 1.845507e+08 \n", "3 NaN NaN ... 1.804363e+08 1.848404e+08 \n", "4 NaN NaN ... 2.123978e+08 2.211172e+08 \n", ".. ... ... ... ... ... \n", "261 NaN NaN ... 9.858659e+08 1.022905e+09 \n", "262 1.339494e+09 1.329842e+09 ... 4.411780e+10 2.255247e+10 \n", "263 NaN NaN ... 3.516421e+10 3.919754e+10 \n", "264 8.099318e+09 8.427778e+09 ... 3.812860e+11 3.710050e+11 \n", "265 NaN NaN ... NaN NaN \n", "\n", " 2014 2015 2016 2017 2018 \\\n", "0 3.875969e+07 3.681166e+07 4.162950e+07 4.521766e+07 4.781829e+07 \n", "1 1.046544e+08 8.652966e+07 9.972339e+07 1.093597e+08 1.240214e+08 \n", "2 1.778623e+08 1.702910e+08 1.785098e+08 1.881921e+08 1.962306e+08 \n", "3 1.821428e+08 1.838143e+08 2.015109e+08 2.132041e+08 2.215889e+08 \n", "4 2.416698e+08 2.804577e+08 2.983000e+08 2.853000e+08 2.847000e+08 \n", ".. ... ... ... ... ... \n", "261 1.245251e+09 1.253073e+09 1.263687e+09 1.191620e+09 1.185475e+09 \n", "262 2.207599e+10 1.762206e+10 1.245346e+10 1.634067e+10 2.144578e+10 \n", "263 4.352421e+10 3.579971e+10 3.616943e+10 3.792629e+10 4.076543e+10 \n", "264 4.823590e+11 NaN NaN NaN NaN \n", "265 NaN NaN NaN NaN NaN \n", "\n", " 2019 2020 2021 \n", "0 5.422315e+07 5.505471e+07 6.310096e+07 \n", "1 1.187241e+08 1.146266e+08 1.332189e+08 \n", "2 1.779353e+08 1.809118e+08 NaN \n", "3 2.394622e+08 2.444624e+08 2.486656e+08 \n", "4 2.742000e+08 2.577000e+08 NaN \n", ".. ... ... ... \n", "261 NaN NaN NaN \n", "262 NaN NaN NaN \n", "263 4.523143e+10 NaN NaN \n", "264 NaN NaN NaN \n", "265 NaN NaN NaN \n", "\n", "[266 rows x 66 columns]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Read a the GDP data file\n", "data = pd.read_csv('Files/GDP_Data.csv')\n", "\n", "# Display the content of the dataframe.\n", "# Useful to see the column names. Pay attention to the unit of GDP.\n", "# alternatively, you can open the .csv file\n", "data" ] }, { "cell_type": "code", "execution_count": 3, "id": "e3c30139-3618-49d7-8d0e-a4457e795fd4", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4 284700000.0\n", "Name: 2018, dtype: float64" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Here is an example on how to obtain Palau's GDP in 2018\n", "Palau_2018_GDP = data[data['Country Name'] == 'Palau']['2018']\n", "Palau_2018_GDP" ] }, { "cell_type": "markdown", "id": "6ac5d5fd-37e0-427d-8018-0a8e77aee7c4", "metadata": {}, "source": [ "Note that the value is not just a number but `pandas series`. Although you can do most arithmatic operations with `pandas series`, there are some certain operations that you need to use the actual number (in float data type). The example below illustrate on how to add the GDPs of two countries." ] }, { "cell_type": "code", "execution_count": 4, "id": "391772ae-7d7c-4a67-be0b-c59c8d7d8b5c", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "The total GDP from Palau and Nauru in 2018 is 4.1e+08 US Dollars\n" ] } ], "source": [ "# Here is how to add two countries GDPs\n", "\n", "# convert to float\n", "Palau_2018_GDP = data[data['Country Name'] == 'Palau']['2018'].array[0]\n", "Nauru_2018_GDP = data[data['Country Name'] == 'Nauru']['2018'].array[0]\n", "\n", "sum_2018_GDP = Palau_2018_GDP + Nauru_2018_GDP\n", "\n", "# display the sum\n", "print(\"The total GDP from Palau and Nauru in 2018 is %.2g US Dollars\" % sum_2018_GDP)" ] }, { "cell_type": "code", "execution_count": 5, "id": "d947fa56-019b-4895-abd5-c3c91b6b0896", "metadata": {}, "outputs": [], "source": [ "# Now we select a few nations to make a bar chart\n", "countries = data['Country Name']\n", "\n", "wh = ((countries == 'Honduras') | \n", " (countries == 'Haiti') | \n", " (countries == 'United States') | \n", " (countries == 'Japan') | \n", " (countries == 'China'))\n", "data_selected = data[wh]" ] }, { "cell_type": "code", "execution_count": 6, "id": "1d6d1eb6-39c5-4fbb-bd71-17bd379237cf", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Country NameCountry CodeIndicator NameIndicator Code196019611962196319641965...2012201320142015201620172018201920202021
79HaitiHTIGDP (current US$)NY.GDP.MKTP.CD2.731872e+082.710660e+082.818968e+082.948834e+083.252812e+083.532518e+08...1.370893e+101.490247e+101.513926e+101.483315e+101.398769e+101.503556e+101.645503e+101.478584e+101.450822e+102.094439e+10
97HondurasHNDGDP (current US$)NY.GDP.MKTP.CD3.356500e+083.562000e+083.877500e+084.102000e+084.570000e+085.086500e+08...1.852860e+101.849971e+101.975649e+102.097977e+102.171762e+102.313623e+102.406778e+102.508998e+102.382784e+102.848867e+10
229JapanJPNGDP (current US$)NY.GDP.MKTP.CD4.430734e+105.350862e+106.072302e+106.949813e+108.174901e+109.095028e+10...6.272360e+125.212330e+124.896990e+124.444930e+125.003680e+124.930840e+125.037840e+125.123320e+125.040110e+124.937420e+12
233ChinaCHNGDP (current US$)NY.GDP.MKTP.CD5.971647e+105.005687e+104.720936e+105.070680e+105.970834e+107.043627e+10...8.532230e+129.570410e+121.047570e+131.106160e+131.123330e+131.231040e+131.389480e+131.427990e+131.468770e+131.773410e+13
237United StatesUSAGDP (current US$)NY.GDP.MKTP.CD5.433000e+115.633000e+116.051000e+116.386000e+116.858000e+117.437000e+11...1.625400e+131.684320e+131.755070e+131.820600e+131.869510e+131.947960e+132.052720e+132.137260e+132.089370e+132.299610e+13
\n", "

5 rows × 66 columns

\n", "
" ], "text/plain": [ " Country Name Country Code Indicator Name Indicator Code \\\n", "79 Haiti HTI GDP (current US$) NY.GDP.MKTP.CD \n", "97 Honduras HND GDP (current US$) NY.GDP.MKTP.CD \n", "229 Japan JPN GDP (current US$) NY.GDP.MKTP.CD \n", "233 China CHN GDP (current US$) NY.GDP.MKTP.CD \n", "237 United States USA GDP (current US$) NY.GDP.MKTP.CD \n", "\n", " 1960 1961 1962 1963 1964 \\\n", "79 2.731872e+08 2.710660e+08 2.818968e+08 2.948834e+08 3.252812e+08 \n", "97 3.356500e+08 3.562000e+08 3.877500e+08 4.102000e+08 4.570000e+08 \n", "229 4.430734e+10 5.350862e+10 6.072302e+10 6.949813e+10 8.174901e+10 \n", "233 5.971647e+10 5.005687e+10 4.720936e+10 5.070680e+10 5.970834e+10 \n", "237 5.433000e+11 5.633000e+11 6.051000e+11 6.386000e+11 6.858000e+11 \n", "\n", " 1965 ... 2012 2013 2014 \\\n", "79 3.532518e+08 ... 1.370893e+10 1.490247e+10 1.513926e+10 \n", "97 5.086500e+08 ... 1.852860e+10 1.849971e+10 1.975649e+10 \n", "229 9.095028e+10 ... 6.272360e+12 5.212330e+12 4.896990e+12 \n", "233 7.043627e+10 ... 8.532230e+12 9.570410e+12 1.047570e+13 \n", "237 7.437000e+11 ... 1.625400e+13 1.684320e+13 1.755070e+13 \n", "\n", " 2015 2016 2017 2018 2019 \\\n", "79 1.483315e+10 1.398769e+10 1.503556e+10 1.645503e+10 1.478584e+10 \n", "97 2.097977e+10 2.171762e+10 2.313623e+10 2.406778e+10 2.508998e+10 \n", "229 4.444930e+12 5.003680e+12 4.930840e+12 5.037840e+12 5.123320e+12 \n", "233 1.106160e+13 1.123330e+13 1.231040e+13 1.389480e+13 1.427990e+13 \n", "237 1.820600e+13 1.869510e+13 1.947960e+13 2.052720e+13 2.137260e+13 \n", "\n", " 2020 2021 \n", "79 1.450822e+10 2.094439e+10 \n", "97 2.382784e+10 2.848867e+10 \n", "229 5.040110e+12 4.937420e+12 \n", "233 1.468770e+13 1.773410e+13 \n", "237 2.089370e+13 2.299610e+13 \n", "\n", "[5 rows x 66 columns]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_selected" ] }, { "cell_type": "code", "execution_count": 7, "id": "bc3bc7d7-15a7-466f-a5a5-e4b2f579b7b6", "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "Country Name=%{x}
2020=%{y}", "legendgroup": "", "marker": { "color": "#636efa", "pattern": { "shape": "" } }, "name": "", "offsetgroup": "", "orientation": "v", "showlegend": false, "textposition": "auto", "type": "bar", "x": [ "Haiti", "Honduras", "Japan", "China", "United States" ], "xaxis": "x", "y": [ 14508218017, 23827840810, 5040110000000, 14687700000000, 20893700000000 ], "yaxis": "y" } ], "layout": { "autosize": true, "barmode": "relative", "legend": { "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Countries' GDP in 2020" }, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ -0.5, 4.5 ], "title": { "text": "Country Name" }, "type": "category" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ 9.986147335300611, 13.495482092502696 ], "title": { "text": "2020 GDP" }, "type": "log" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAFoCAYAAADkaRuEAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQd4VMUahr8k9N47IlIEpCiK2EB6F0RRmtJBqvQiiPTee68BpAlKky6Il6KIgAiKoiJFQq9Skuze5x/cNQkpe+bMhk3ynfvc516S+efMeWeyefNPOX5Op9MJXiRAAiRAAiRAAiRAAiRgkYAfRdIiMRYnARIgARIgARIgARJQBCiSHAgkQAIkQAIkQAIkQAJaBCiSWtgYRAIkQAIkQAIkQAIkQJHkGCABEiABEiABEiABEtAiQJHUwsYgEiABEiABEiABEiABiiTHAAmQAAmQAAmQAAmQgBYBiqQWNgaRAAmQAAmQAAmQAAlQJDkGSIAESIAESIAESIAEtAhQJLWwMYgESIAESIAESIAESIAiyTFAAiRAAiRAAiRAAiSgRYAiqYWNQSRAAiRAAiRAAiRAAhRJjgESIAESIAESIAESIAEtAhRJLWwMIgESIAESIAESIAESoEhyDJAACZAACZAACZAACWgRoEhqYWMQCZAACZAACZAACZAARZJjgARIgARIgARIgARIQIsARVILG4NIgARIgARIgARIgAQokhwDJEACJEACJEACJEACWgQoklrYGEQCJEACJEACJEACJECR5BggARIgARIgARIgARLQIkCR1MLGIBIgARIgARIgARIgAYokxwAJkAAJkAAJkAAJkIAWAYqkFjYGkQAJkAAJkAAJkAAJUCQ5BkiABEiABEiABEiABLQIUCS1sDGIBEiABEiABEiABEiAIskxQAIkQAIkQAIkQAIkoEWAIqmFjUEkQAIkQAIkQAIkQAIUSY4BEiABEiABEiABEiABLQIUSS1sDCIBEiABEiABEiABEqBIcgyQAAmQAAmQAAmQAAloEaBIamFjEAmQAAmQAAmQAAmQAEWSY4AESIAESIAESIAESECLAEVSCxuDSIAESIAESIAESIAEKJIcAyRAAiRAAiRAAiRAAloEKJJa2BhEAiRAAiRAAiRAAiTgsyLpdDpx8fI1BAeHIlPGtEiWNEmc7y15pjv/3EOigAAkS2b+eX765Q8c+OFnPFc0P54rWsAyryvXbuL2nbvImD4NUqVMbjneGwGhoaG4e+8BkiRJjCSJExm/xc1bd3DxynVVd7YsGaO9h/Tfub8vq7ZkyZQuyraEhITi0pXruHX7H2TKmA4Z0qWOtt0yJoIuXUWuHFm88ozGobFCEiABEiABEviXgM+J5Mnfz2Lk1KU4cOhEuE4qUjAP6tUqh1qVXkbKFMkeaweGOhyYNGc18j6RHXWrl/G4LWf/voSqDXuiaKG8WDFzgMdxnhZcvXE3BoxZgO5t66NFg+oehZ349TTGz1qJI8dPKcl1XRnSp0HtKq+gdpVX8XS+3OrLqzfsxoCxC8LVK+Xy5cmh+qVq+ReROoKARhaTNXMGVH39BTR5pyqyZ80YbTvXb9uLPsNmo3XjWujSup5Hz+RJoRXrvsKswPVK4MJeLRvVxIct3kKiRAHhvh64eiumzF/jZiTPPbR3S7z+Ugl3uctXb6DviLn433c/PjJ2P+7SBCWK5Av3dbl31wHTFHvXVbnsCxjRtzWSJ0vqyWOwDAmQAAmQAAk8VgI+JZJfbPkf+o6Yo4DIL+jnihXA/QfBOPbzH9hz4Kj6+pwxPfBKqaKPFVpwcAierdwK5V55FtOGd/G4LZKlEnF4Kk92DO7ZwuM4Twtu+/ogunwyVdX9ds2yMYaJSE2e95kqV6nM80pwEydKhD/PXsCmHfuVNIWV3pXrvsKg8YuUED35RHbcuHkb54Ou4OSpM6qOXDky49Ppn4TLwEUWc/TE77h67SZEKFfOGoBMGdJG2dZvvv0RMxevwxtVXkH92uVjfCZPCwgn4fVG5VdQ4Klc+O2Ps1i3da8K79i8Lto1reOuyiXD8nwN6lTAvXsPsGDFl4pP4JS+KFmsoCorHOq27I98T+ZAuVeeQ4rkSbFl13fq6/LHz+aloyECKpeM6+qNeyuRlb565um82L33MHbvP4JXSxXD7DHdPX0UliMBEiABEiCBx0bAZ0RSplXL1v1QgZgwqAOqvF4qHJRfTp1Bn+Gz0bNt/Tgrkt7uZcnitug2CpOGdFJiGN11+NhvaNxxqBKc6SO64oUST4crLqIjsvT1viNYNr2/+p5LCod/1Bp1qr7qLv/XuSCMm7kS2/d8ryRz/vje7qn7yGIeBIeg15CZSuTavl8bnVq+5W00j9Qv9y5e+Ckls65r3/c/oVX3MUqItywb4/567WZ9cerP8/hy6Sg8kTOr+vre746hdc+xKms7om8b9bWLl6/j8E+/olKZF+Dv7+eOb9R+iMo6jvmkHWpUKK2+vvN/h9Cp32Qlx590a6q+JtP4TTuPxA/HfsWmJaOQJ9fDe/EiARIgARIgAV8l4DMiOWLKUiz5bBtkarFbm3ci5SWZwJDQUPe036EfT2Lm4vXql3fSpEnwfLGC6PbBO+5f9lLJp2t3qGzmsI9aIX3a/9aqydfke+2bvamybnKNmvapWpfZodmbmLbwc3cWtFr5F9GzfUM1bfvP3Xvo8sk0NX0pEvZC8YcCJmsexw/sgJ9O/olp89ei/psV8ESOLNiwbR9kuv6VF55BvVqvo3P/KSj+TD4lUK5LBCJw9TZ8+dUBlX0VkSlbugQ+bPV2uKniHd8cwvLPd+DnfzOAeXNnQ8XXSqJ+nQpqDalMU9drPQALJ/ZBqWcLRTvmJHMmmTJpc9Vy4aU9bODV67fcGcaoRFLKixx27DtJcQmb0YsqRpjUbfFxjNk3eaYp89bg3drlVQZYrs83f4Otu75DxxZvQaa+RcrOnr+kGPft/D6Ei84l/VC8YksV+uPOBUoG/zhzAbXe74MypYtj5qhu4aotU/dDlVk9sn3eI1PhYQsuXLEZY2YsR9c276BVo5rqWx8Nn60yoJ/O6I/ihf+b8l6zaQ/6j56HHu3qo3l9z5Yn6DwrY0iABEiABEjABAGfEUlX1ufrtZPVZo+YLsl+iZTJJaJ37/4D7Np7WP177bwhKPjvur7B4xdB1sPtXDU+XPZp1fpdGDhuIaaP7Ope51a/7SAlcq5LBPOPv/5WU5gy/ShTxrIZpXnXkTh+8rQqJms35UqZIrkSOBHUtr3Hq6+7ysj3JXM1oFszPF+tjcoWStZQLtnA0eGjiWpKU8S0UtkXVB0iKFLH8pkDEODvr4RJ1gpKmVdeKKqeV0Ra2rZ1+VjkzJYJktUdN2sl2jetg1zZM0eJ8PrN23i1dkc8mTsbNiweAT+//7Jn0XGPTiQlTmSuaqOeSmKFhVzRZTFlard0ycIqgxnV5coS9uv8HhrVraSKTZi9CnOXbXSHSF/fuHnn3w0rmbEpcCQCAsKvcYxpPMn3fz99Hm807aumn/esnaxC9h86jpbdRqs/OOQPjLCXjD8Zh1+tnhjt5pteQ2di4/b9KnMp40Cu9zoOU5nHQ1vnIGmSxO5qXX8MyLPKM/MiARIgARIgAV8m4BMi6coEiSR9u2lmjLzCri/bEDjSnYFySVzYNWY6IinS0LJBDZVllIxctUY9lbAd3TlfSV10ayRdbZCHkA0i1SuUVpLx4EEw0qZO9YhIfrnzAHoMnoGGb1ZErw4N1a5d2cwzaNxCfLbxa0wZ9iEqvFoSrunRsM8ra/VWrv9KrR8Mm22NCaBrWjvstGxMMdFJoStWpLh0zXYPWe2Yp2QuKpGcOGc15izdgJYNa6DbB+9qiaQIed/O7yFrpvRqWlgEfu/Bn9RUfMSNLZ48n2ymkfWYYdu0aecB9Bw8A707NkKTelXCVSOZQ8kghv3DJeJ9wo4fkVPXGkkRbhHvn3YtDBfiknHJEku2mBcJkAAJkAAJ+DIBnxBJWVtWvl4XlYFbNXtQjLxcIiS/2OUXfNiryYfD8f3Rk9i/YTpSp0oBqyIpGciIMttt4DS1acKVefJEJHu2a4Bm9auFa5uIX8SMZPs+E1Q2cvOy0cie5b8dzJIJ+6DXOPc0seu5ZHOPa4o3RlBRFHDJq0yzynSr65KM3OqNX4eLypY5vdpd7YlIShlXpk2eJ3eOLG6RlLWAsg5Tdjbv//64OwMrawGj22wTXUby8wVDUSBvLnd7P/18B4ZODIxxuj4yLK77iOh9MX+oW/iWf7ETQyYsxsDuzfDOG+XChQ6btATL1m4Pt+EmbAEZJ+0/mqDktnOrt9HmvTfc336xRlv1/yOONdfPQkyZWt2+ZxwJkAAJkAAJmCTgEyLpErOwU4rRPaRrmndIr5Z4q0b443dcay3XzBuijq0xIZKuOratGIccWTN6lJGUDRQRdxlHJpKuzFRUzyvrKgf1aI61X+7Bx6PmqWKyhvLFZwvh9ZefVdnKsBs7PBkcLhGXHcsj+z3cKCJX2Gyq62th5T6mqW2Jca0b/GHbXJVddcVEbJeIkjyXyGZ0lxWRdGUPR/X7ALUqv+wJClXm6IlTaNhuiPr/EbOZssa197BZaprZNbXuqviTMfNV1nj1nEEoXODhEgfXJRlSWYogbZKlF6P7t1XZbNdV4Z1uair+kYzkv0dEhV3+4PGDsCAJkAAJkAAJxDIBnxBJeeaa7/fBn2cuYO+6aUibJmW0GFzHsYgEiQyFvWRTg2xuWD7jExQr/JRbJHesHI9sWf7boRvVGsnIMpKS5ZJslzdEUjJTMhU8rE+rSJ9Zdu66DheXXdnzPt0U7pxCWce5dOrH0W72iFixrL8U4ZNjar5YMMy9RlKE/ubtf1Rxh8OBcm+HzxLHJJKueiNbIymbqMqULoY0qVIid47MSJHcs7NArYikZI0le2xFJEWq2/Qaq/pgwYTeePG5wuFwuXZnR8woSiFXpnrn6glqet11Ccd+o+aqdZEihLJbO+Jh6q6lCq4lAK5Y1xFCcsxQ/65NYvnjgLcjARIgARIgAWsEfEYkXbtYI57hF/ZxZA2eCM63h39Wx7R0avEW2jb5b/ezlHWdD7jrs4nInDGdmpaU6cmwawulnAmRjGwnryur52lG0jVlfXDzLI8PoZZs148n/sDYmSvUho1Zo7vjtReLWep5V0Zs0uBOqFT20aOChHXR8s3DLTeITiSlvJwBKjuRPdm17WljvSmSrr6StblzxvaMdF3lr3+cxZvNPw63QcrVdhdDV/ZVvn733n10HzhdTd3LHzlyaHnEw82lXPdB07H5q2/hypy76nRl2z9s+TY+eP+/qXBPebEcCZAACZAACcQmAZ8RSTmLUHbxyhV2J7ULxpnzF9VbVVo1rIlC+Z9QGTU5A1B26LpeNyiHY1eu311N/crhz7IbeWbgOnV8TNgz/OSXvdQlGaOIu7Y9yUhKm54p1+yR8wbl61ZFcuqCtZix6Av1Jhp5I03YSzZe3Lh9B88UfFLt2q5a7sVwma2la7Zj+OQl6Pvhe2j81sMdzZ5eu/cdRvuPJqq1gBMGdnjkHEkrIinrHuVwc1kvKBlS2bHtejNLTFnMmNrrLZF0HbMjzz9vXC8UfOq/tZYR/3ip1eQj9crD9YtHuDOPIvCyHlSmrccNaK9CJCPb7qMJaue/rCuVI3zCTmeHrdeVPQ27scfhcKoNQ3KEUsT1nzFx4vdJgARIgARI4HEQ8BmRlIdftHIzRk9frjjIhpJnn8mv1iPK2Yyuo31cb7Zx7bAVcalfuwKCQ0Lcr7wLe6D5wSO/oGnnEerYHPnlLlOYG7bvU7/0I0qrHP/jqUi27jFGbaKoU+01JXry+sPeHRpaFklpT7XGvVR7ZLd5+VeexYPgYMjbXyRj5VqbJ1Pg6dOlVlmup57Iru4X+Nk23L//AJuXjYnxfc6RDS7XlL18T6ZgixR8Ui0ruHDxqpIZOb4osjWSMtWeP29OqPdUX76usqJyRfdmm4iHmHs62L0hkrIrvniFh28Wkmn4J3I+uk6z7Esl3Ie6y3mjQycFqqUA8prO4AfBWLhqi+qzsNPhs5esx6S5D98UFNWbhfp3aYLEiROpt+NUbthD1SF/BBR8Kjf2HjymNnU9X7wgFk/u6ykiliMBEiABEiCBx0bAp0RSKMgbQEZNXRbu/cPydTkr8J1ar6t3W0u2S6Z3Zy/ZAMnouS6RRVlXFnHdpOuoGVc5ETaRgsWrtqhDpmWKWq6oRNK1OzfsOkt508m0hWvVL365XEcXudbUDejWVB2iHfZybbaR9ylPHNzR/S3Jdsn7rl2v6HN9QzakyPul5cBq+b5M0Yd9H7acA/lxl/fx8vPPaA8gWXc5fvbKcOdnSmWS7ZUNK29Uftm9M9q1HCAsb1k+IBuQalR8SR1sHnHtoysmsvWsnjTadY7jx53fR8O6FVWIyJpI2xcLhyH/kznd1biyfGGzz5HdQzJ/xSo0j/b2smRClk64Ljm3Us6vDPvsw/u0DrcsIGKZyG7w/ebZ7gz6uQuX0bHfJPcrJqW8vBp0VP+2j7yz3BNWLEMCJEACJEACsU3A50TSBUBEUX7RyhtTsmRMhzSpI9+AIxnLv85dVOvQJCMW1VTitRu3VKYtR9ZMMW7msdIJt27/gxu37qgpT8k02bnkmf8OuqrOkcyaOb16W03YS6ab5dBxyWJJdjJj+rSWd2xH1T7XveXNPTmzZ1ZizCs8AWEkYy0gwF/tNvf0IPeYOLrGprx+kdxjosXvkwAJkAAJ+BIBnxVJX4LEtpAACZAACZAACZAACTxKgCLJUUECJEACJEACJEACJKBFgCKphY1BJEACJEACJEACJEACFEmOARIgARIgARIgARIgAS0CFEktbAwiARIgARIgARIgARKgSHIMkAAJkAAJkAAJkAAJaBGgSGphYxAJkAAJkAAJkAAJkABFkmOABEiABEiABEiABEhAiwBFUgsbg0iABEiABEiABEiABCiSHAMkQAIkQAIkQAIkQAJaBCiSWtgYRAIkQAIkQAIkQAIkQJHkGCABEiABEiABEiABEtAiQJHUwsYgEiABEiABEiABEiABiiTHAAmQAAmQAAmQAAmQgBYBiqQWNgaRAAmQAAmQAAmQAAlQJDkGSIAESIAESIAESIAEtAhQJLWwMYgESIAESIAESIAESIAiyTFAAiRAAiRAAiRAAiSgRYAiqYWNQSRAAiRAAiRAAiRAAhRJjgESIAESIAESIAESIAEtAhRJLWwMIgESIAESIAESIAESoEhyDJAACZAACZAACZAACWgRoEhqYWMQCZAACZAACZAACZAARZJjgARIgARIgARIgARIQIsARVILG4NIgARIgARIgARIgAQokhwDJEACJEACJEACJEACWgQoklrYGEQCJEACJEACJEACJECR5BggARIgARIgARIgARLQIkCR1MLGIBIgARIgARIgARIgAYokxwAJkAAJkAAJkAAJkIAWAYqkFjYGkQAJkAAJkAAJkAAJUCQ5BkiABEiABEiABEiABLQIUCS1sDGIBEiABEiABEiABEiAIskxQAIkQAIkQAIkQAIkoEWAIqmFjUEkQAIkQAIkQAIkQAIUSY4BEiABEiABEiABEiABLQIUSS1sDCIBEiABEiABEiABEqBIcgyQAAmQAAmQAAmQAAloEaBIamFjEAmQAAmQAAmQAAmQAEWSY4AESIAESIAESIAESECLAEVSCxuDSIAESIAESIAESIAEKJIcAyRAAiRAAiRAAiRAAloEKJJa2BhEAiRAAiRAAiRAAiRAkeQYIAESIAESIAESIAES0CJAkdTCxiASIAESIAESIAESIAGKJMcACZAACZAACZAACZCAFgGKpBY2BpEACZAACZAACZAACVAkOQZIgARIgARIgARIgAS0CFAktbAxiARIgARIgARIgARIgCJpcwycv3LXZg0MJwESIAESIAESeFwEcmRM/rhuHS/uS5G02Y0USZsAGU4CJEACJEACj5EARdIefIqkPX6gSNoEyHASIAESIAESeIwEKJL24FMk7fGjSNrkx3ASIAESIAESeJwEKJL26FMk7fGjSNrkx3ASIAESIAESeJwEKJL26FMk7fGjSNrkx3ASIAESIAESeJwEKJL26FMkPeQ3d9lGHDp6Elkyp0fd6mVQokg+Fck1kh4CZDESIAESIAES8EECFEl7nUKR9JDf1AVrUaXsCzh9LggjpizDthVjEeDvT5H0kB+LkQAJkAAJkIAvEqBI2usViqRFfqEOB16u1R4bFo9ElkzpKJIW+bE4CZAACZAACfgSAYqkvd6gSFrkt3rjbmzasR/zx/dWkbfvhlisgcVJgARIgARIIHoCTidw9Hgovv3ej6g0CbxXH0ie1D/G6FTJE8VYhgWiJkCRtDA6vtx5APOXb8Ks0T2QIV1qFXnzn2ALNbAoCZAACZAACcRMQETy2AkHFgTGLEIx15bwShR62okmDYFkSWMW8TQpEic8QAafmCLpAUyn04n5y7/EgUMnMG5ge6RO+d/rlLjZxgOALEICJEACJGCZwKlTfli0NMByHAMAEcn69UIR4AE+Tm3bGzEUSQ/4XbtxC6/V6YQnc2dDQMDDvw47NKuLquVKcY2kB/xYhARIgARIwDoBiqR1Zq4IiqQ+O6uRFEmrxCKUZ0bSJkCGkwAJkAAJREqAIqk/MCiS+uysRlIkrRKjSNokxnASIAESIAFPCFAkPaEUeRmKpD47q5EUSavEKJI2iTGcBEiABEjAEwIUSU8oUST1KZmJpEja5MipbZsAGU4CJOAzBO7ciXmHq8801kcbkjKl01jLKJL6KJmR1GdnNZIiaZUYM5I2iTGcBEjAVwncuOGH1Wt43Ixu/9Su5UDmzBRJXX4m4yiSJmlGXxdF0iZrZiRtAmQ4CZCAzxAQkVzyqT+CLjIzabVTEicG2rYKpUhaBeel8hRJL4GNpFqKpE3WFEmbABlOAiTgMwQokvpdQZHUZ+eNSIqkN6hGXmeCEkk5WNzhcCAgihNKL1+9gVQpkiNZsiQe9wBF0mNULEgCJODjBCiS+h1EkdRn541IiqQ3qFIksX7bXkyYvRo7V40PR+Ovc0Fo12cC/jxzQX397Zpl8UnXppgyfw3mLtsYZW/8tGshDySPvbHKO5EACXiZAEVSHzBFUp+dNyIpkt6gmoBFUkSxdc+xOHv+ErJmzvCISLbpOQ6pUibD8D6t8felq6j/wUD079oEr5Yqhhu37ihyG7btxYbt+zBzVHf17wB/PzyRMytFMvbGKu9EAiTgZQIUSX3AFEl9dt6IpEh6g2oCFsnQ0FDItPXOb37AnGUbw4nkzVt38PIbHbB06sd4tmh+RWnYpCW4cPEqpgz70E3t0893QP67buHwcCQ5tR17g5V3IgES8C4BiqQ+X4qkPjtvRFIkvUE1AYuk69G/3HkAY2asCCeSp/48j9rN+mLXZxOROWM6VTRw9Vas2/o/rJo9KEaRvHDtXuz1Fu9EAiRAAl4kcP06ELiMu7Z1ELtEMmtWnejIY379DVi0JMBchQmoJhHJBu84kChRzA+dLX2ymAuxRJQEEtRmm8hE8vCx39C441DsWz8NaVKnVKBWrd+FGYvXhRPOqDKSDoe5M8M4TkmABEjgcRL463wI5ixy8vgfjU4QkezU1oFCT3m+WTO628jvlm+PBGP+Yp7rqdEdEJFs08QfqVLELOL+/jzuSoexKybBi6QrI7l7zSRkypDWckaSU9t2hh9jSYAEfIkAp7b1e4NT2/rsvBHJqW1vUI28zgQvkpGtkRw6MRBBl65xjWTsjUPeiQRIwAcIUCT1O4Eiqc/OG5EUSW9QTcAiKedH3n8QjK27D2LinNXYtGQkEgUEIFGihynv1j3GIHWqFBjWpxX+DrqCBu0Gq13bb1R+xU2Nm21ib1DyTiRAAo+HAEVSnztFUp+dNyIpkt6gmoBF8rc/z6FOs37hCNSu8gpG9G2jvnb6bBDa9Hp4PJBcb9UogwHdmrlFU75GkYy9Qck7kQAJPB4CFEl97hRJfXbeiKRIeoNqAhZJT3EGXb6m3myTMoXnO7i4RtJTuixHAiTg6wQokvo9RJHUZ+eNSIqkN6hSJL1ClSLpFayslARI4DEQoEjqQ6dI6rPzRiRF0htUKZJeoUqR9ApWVkoCJPAYCFAk9aFTJPXZeSOSIukNqhRJr1ClSHoFKyslARJ4DAQokvrQKZL67LwRSZH0BlWKpFeoUiS9gpWVkgAJPAYCFEl96BRJfXbeiKRIeoMqRdIrVCmSXsHKSkmABB4DAYqkPnSKpD47b0RSJL1BlSLpFaoUSa9gZaUkQAKPgQBFUh86RVKfnTciKZLeoEqRtEVVzpE88etpdx0N6lREkYJ5QJG0hZXBJEACPkSAIqnfGRRJfXbeiKRIeoMqRdIW1W4Dp6FUiULI/1ROVU/+J3MifdrUFElbVBlMAiTgSwQokvq9QZHUZ+eNSIqkN6hSJG1RFZF8t3Z5lCrxNAICHr5aUS5mJG1hZTAJkIAPEaBI6ncGRVKfnTciKZLeoEqRtEV1+OQlOH7yNC5dvY4SRfJhaO9WSJI4Ee7eD7VVL4NJICETCAl14vwF/gzZGQM5sgUgUYCfnSr++8M4KBTzA4Ggi2bqM9KoOFKJiGSHNg7ky5PISIsdTicOHwvFgkB/I/UltEpEJJs39kOKZDHzS570v+RQQuNk4nn9nE6n00RFCaUOh8OJVj1Go1XDmnilVFFcu/0goTw6n5MEjBOQn6cdu4BvD8b8YW/85vGgwhdfcKBiOcDf34z4XbrsxKKlfhRJjbEhItm+dShy5TQzluU38/GfnVi4xEx9Go8Up0NEJN9v4ESSJDH/bKRPlSROP+vjbjxF0sMeuHTlOjJnTAf5xdesywh0avmWWjPJqW0PAbIYCURBYM83/ti2k78sdQZI5QoOlHnNoRMaaQyntvVRcmpbn503Ijm17Q2qkddJkfSQddVGPZExXRrcuHUHzxcviEE9msPPz48i6SE/FiOBqAhQJPXHBkVSn53pSIqkaaL26qNI2uNnJZoi6SEtWQFw/eZtJE2SGCmSJ3NHMSPpIUAWIwFmJI2HOPFpAAAgAElEQVSPAYqkcaTaFVIktdF5JZAi6RWskVZKkbTJmiJpEyDDEzwBZiT1hwBFUp+d6UiKpGmi9uqjSNrjZyWaImmFViRlKZI2ATI8wROgSOoPAYqkPjvTkRRJ00Tt1UeRtMfPSjRF0gotiqRNWgwngUcJUCT1RwVFUp+d6UiKpGmi9uqjSNrjZyWaImmFFkXSJi2GkwBF0uQYoEiapGmvLoqkPX6moymSpolGXR9F0iZrTm3bBMjwBE+AGUn9IUCR1GdnOpIiaZqovfookvb4WYmmSFqhxYykTVoMJwFmJE2OAYqkSZr26qJI2uNnOpoiaZooM5JeI8qMpNfQsuIEQoAZSf2OpkjqszMdSZE0TdRefRRJe/ysRDMjaYUWM5I2aTGcBJiRNDkGKJImadqriyJpj5/paIqkaaLMSHqNKDOSXkPLihMIAWYk9TuaIqnPznQkRdI0UXv1USTt8bMSzYykFVrMSNqkxXASYEbS5BigSJqkaa8uiqQ9fqajKZKmiRrOSN679wDjZq3E3oPHEBDgj1qVXkbz+tWROHGi2Gu5j9yJGUkf6Qg2I84SYEZSv+sokvrsTEdSJE0TtVcfRdIePyvRWhnJ7oOmY/NX36JM6eJ4EByMA4dOoEWD6ujetr6Ve8eLshTJeNGNfIjHSIAiqQ+fIqnPznQkRdI0UXv1USTt8bMSbVkkr16/hTJvdkK/zu+hUd1K6l6zl6zHpLmf4cDGGUiVMrmV+8eZsnOXbcShoyeRJXN61K1eBiWK5FNtp0jGmS5kQ32UAEVSv2MokvrsTEdSJE0TtVcfRdIePyvRlkXyxK+nUa/1AOxcNR5ZM2dQ97pw8SoqvtsNq+cMQuECeazcP86UnbpgLaqUfQGnzwVhxJRl2LZiLAL8/SmScaYH2VBfJUCR1O8ZiqQ+O9ORFEnTRO3VR5G0x89KtGWR/OHYr3iv4zDs3zgDqf/NPt5/EIySVVpj/vjeKF2ysJX7x7myoQ4HXq7VHhsWj0SWTOkoknGuB9lgXyNAkdTvEYqkPjvTkRRJ00Tt1UeRtMfPSrS2SNap9hqS/Lu5xuFw4LONX6s1k9myPMxSytWnQyMkS5bESnt8vuzqjbuxacd+Jc1yXb5x3+fbzAaSgK8ScDqBr74Gtu7w99Um+nS7qlR0oHxZwM/PTDOvXHVi8TJ/BF00VKGZZsWJWkQk27UORY5sZtg5Afxy0omFSwLixPP7WiNFJBu/60DixDH3R6a0SX2t+XGqPZZF8qeTf6LbwGkePeTqOYPdWUuPAny80Jc7D2D+8k2YNboHMqRLrVr7IMTh461m80jAdwmEhDiwcVsotmynSOr0UtVKDtSsHIBEiczwO/t3COYtBkVSozNEJDt+4ECBvIk1oh8NcTidOHQ0BPMXm+lbI42KQ5WISLZ83w8pk8cs4kkM/fzEITxGm2pZJI3ePY5U5nQ6MX/5l2p3+riB7cPJMTfbxJFOZDN9lgCntvW7hlPb+uxMR3Jq2zRRe/VxatsePyvRRkTy7r37CAgIcE91W2lAXCh77cYtvFanE57MnU2dmylXh2Z1UbVcKa6RjAsdyDb6NAGKpH73UCT12ZmOpEiaJmqvPoqkPX5WorVFUg4ln774C+w7eAzHT55W95SNNpXLvoCGb1a00oY4XZYZyTjdfWy8DxCgSOp3AkVSn53pSIqkaaL26qNI2uNnJVpLJG/duYtO/Sbhu8M/45UXnkHRQk8hJCQER46fwvdHTyqR/OjDxup4nPh+USTjew/z+bxNgCKpT5giqc/OdCRF0jRRe/VRJO3xsxKtJZJDJizG8i92YvrIrnj9pRLh7vfp5zswdGIgBvVojnq1XrfSljhZliIZJ7uNjfYhAhRJ/c6gSOqzMx1JkTRN1F59FEl7/KxEWxbJB8EheK5yK3RsXhftmtaJ9F6d+0/BhUtXsWLmACttiZNlKZJxstvYaB8iQJHU7wyKpD4705EUSdNE7dVHkbTHz0q0ZZH05C02cs5izyEz8dOuhVbaEifLUiTjZLex0T5EgCKp3xkUSX12piMpkqaJ2quPImmPn5VoyyIpG2veaTMAu9dMQqYMaSO9lxyT06LbKHy/eXa8O5A84gNTJK0MN5YlgUcJUCT1RwVFUp+d6UiKpGmi9uqjSNrjZyXaski6XpF4YOMMpPr3FYkRbyibbhq1H4J966chTeqUVtoT58pSJONcl7HBPkaAIqnfIRRJfXamIymSponaq48iaY+flWhtkcya+b9XIUa8YXBICK5euxnnRNLhcEL+Y2W3OUXSynBjWRJgRtLkGKBImqRpry6KpD1+pqMpkqaJRl2fZZH861wQFq7Y7FELe7VvGGemtuXtNQPHPVzTKTvO5ZowexXmLtsY5bPKGlCKpEdDgYVIIEoCzEjqDw6KpD4705EUSdNE7dVHkbTHz0q0ZZG0UnlcKbtl13cYOilQZVHlyCKXSF69fgs3bt1Rj7Fh215s2L4PM0d1V/8O8PfDEzmzUiTjSieznT5LgCKp3zUUSX12piMpkqaJ2quPImmPn5VoLZE8e/4SLl65hqfzPYGUKZJBXpH40y9/hrtv3ieyI2P6NFba8tjKSvtv3rqDCbNXI2nSxG6RDNsgOR9T/rtu4fBw7WRG8rF1G28cTwhQJPU7kiKpz850JEXSNFF79VEk7fGzEq0lkvXbDsL1m7fxxfxhaur65KkzqNuyf7j7NqpbCf06v2elLY+9rBy0HhIaSpF87D3BBiQkAhRJ/d6mSOqzMx1JkTRN1F59FEl7/KxEWxZJWSNZvXFvjB/YAVXLlVL3conkpMGdkC1LBuzefwSLVm7Gvg3TLW1csdJwb5TVEcngEIc3msI6SSBBEJCfn43bQrFle/x/nao3OrRqJQdqVg5A4kRm+J39OwRzFwNBF/280dx4XaeIZMcPHCiYN7GR53Q4nfj+aAjmLzbTt0YaFYcqEZFs9b4fUiYPiLHVpn5+YrxRPC1gWSR37zuM9h9NDHdGpEsktywbg1w5MuPUn+dRu1lfbFsxDjmyZowz6HRE8tKN+3Hm+dhQEvA1Ak4nsOtrYOsO/rLU6ZsqFR0oVxbwM+R9V686sXiZP0VSozNEJNu1DkX2bIY6A8AvJ51YuCRmEdJobrwPEZFs9K4DiRPH3B+Z0yaN9zy8+YCWRXLNpj2YMGcV9qyd7G7Xb3+eQ51m/bB1+VjkzJYJskmlzJudsHTqx3i2aH5vtt9o3ToiyTWSRruAlSVAApza1u90Tm3rszMdyalt00Tt1cepbXv8rERbFsm93x1D655j8cO2uUiSOFGk93K9/WbLp2OQK3tmK+15LGVDQ0MRHBKK4ZOXIDTUgf5dmyBx4kThpuW52eaxdA1vmgAIUCT1O5kiqc/OdCRF0jRRe/VRJO3xsxJtWSTPXbiMKg16QNZDVir7fKT3GjdzBeYv/xJHd8xDQIDvp+VXrvsKg8YvCvcsQ3q1xFs1yri/RpG0MqxYlgQ8J0CR9JxVxJIUSX12piMpkqaJ2quPImmPn5VoyyIplfcaOhO79h7GpCGd8PLzz7jvJ5m9VRt2Q6aI2zapjU4t3rLSljhZllPbcbLb2GgfIkCR1O8MiqQ+O9ORFEnTRO3VR5G0x89KtJZIXr56Ay26jVKbagrmy40CeXPi/v1g/PjzHwi6dBXPFS2A2WO6I0XyZFbaEifLUiTjZLex0T5EgCKp3xkUSX12piMpkqaJ2quPImmPn5VoLZGUGzwIDsHSNduw7+BxnPjtNFIkT4pC+Z5AmdLFUbdGmTh17I8VYBHLUiTt0GMsCQAUSf1RQJHUZ2c6kiJpmqi9+iiS9vhZidYWSSs3ic9lKZLxuXf5bLFBgCKpT5kiqc/OdCRF0jRRe/VRJO3xsxJNkbRCK5KyFEmbABme4AlQJPWHAEVSn53pSIqkaaL26qNI2uNnJZoiaYUWRdImLYaTwKMEKJL6o4Iiqc/OdCRF0jRRe/VRJO3xsxJNkbRCiyJpkxbDSYAiaXIMUCRN0rRXF0XSHj/T0RRJ00Sjro8i6SFrOUfyxK+n3aUb1KmIIgXzgFPbHgJkMRKIggAzkvpDgyKpz850JEXSNFF79VEk7fGzEk2R9JBWt4HTUKpEIeR/KqeKyP9kTqRPm5oi6SE/FiOBqAhQJPXHBkVSn53pSIqkaaL26qNI2uNnJVpbJG/d/ge79h2GvOnm6rWb8PPzQ7o0qVC0UF68VLKIesVgfLpEJN+tXR6lSjwd7m09zEjGp17mszwOAhRJfeoUSX12piMpkqaJ2quPImmPn5VoLZHcsus7iFi5rpQpHh48fuefe+p/5d/ThndBqWcLWWmLT5eV93DLO8QvXb2OEkXyYWjvVupd49duP/DpdrNxJODLBBwOJ3bsArbu8PflZvps26pUdKBiOcDf389IGy9ddmLRUj8EXTRTn5FGxZFKRCTbtw5FrpxmxrLTCRz/2YmFS8zUF0cwGmumiOT7DZxIkiTmsZw+VRJj902IFVkWyTPnL6Jao154u2ZZNG9QA0/myqqykXLJKxJP/n4WY2Ysx7Gf/8A3X0xVshWfLvnF16rHaLRqWBOvlCqKu/dD49Pj8VlIIFYJhIQ6sXlHKLZs5y9LHfBVKzlQrWIAEgXE/MvSk/rPB4VifiAokp7AilBGRLJDGwfy5THzO8/hdOLwsVAsCOTPhkZ3QESyeWM/pEgWM7/kSQN0bsGYfwlYFsnPN38Dyc7t2zA9yrfX/B10BZXqd8eaeUPwdL7c8QL2pSvXkTljOohINusyAp1avqXWTHJqO150Lx/iMRLg1LY+fE5t67MzHcmpbdNE7dXHqW17/KxEWxZJ17T2ke3zkChR5Bbvylp+vmAoCuTNZaU9Plu2aqOeyJguDW7cuoPnixfEoB7NVSaWIumzXcaGxRECFEn9jqJI6rMzHUmRNE3UXn0USXv8rERbFsnzQVdQuX53VCrzPFo0rIF8eXIgefKk6p7//HNPHZEzbtZK/PHX39i3flq4jSlWGuZrZZ1OJ67fvI2kSRIjRfKHa0Llokj6Wk+xPXGNAEVSv8cokvrsTEdSJE0TtVcfRdIePyvRlkVSKt++53v0HTHHvbkm4g2zZs6AKUM74Zmn81ppS5wsS5GMk93GRvsQAYqkfmdQJPXZmY6kSJomaq8+iqQ9flaitURSbiAbaw4eOYmTv5+BHAUUEBCAjBnSIE+urChZrGCU6yetNC4ulKVIxoVeYht9mQBFUr93KJL67ExHUiRNE7VXH0XSHj8r0doiaeUm8bksRTI+9y6fLTYIUCT1KVMk9dmZjqRImiZqrz6KpD1+VqK1RfLWnbu4cPEKsmXOgNSpUoS751/ngjArcD36d2mCZMni9/lMFEkrw41lSeBRAhRJ/VFBkdRnZzqSImmaqL36KJL2+FmJ1hJJee/00ImB7vs0qFMB3du+696EcvjYb2jccajabJMmdUor7YlzZSmSca7L2GAfI0CR1O8QiqQ+O9ORFEnTRO3VR5G0x89KtGWRDAkJxSu1O6h3Tb9R+RUcPXEK67buRZGCeTB3bC+kTZMSFEkrXcCyJJCwCVAk9fufIqnPznQkRdI0UXv1USTt8bMSbVkkvzv8M5p1GYmdq8ZDdmfL9f3Rk2jXZzzyPpEdCyb0xslTZ5mRtNILLEsCCZgARVK/8ymS+uxMR1IkTRO1Vx9F0h4/K9GWRXLV+l3qFYjfbpoZ7j6/nz6Ppl1GonD+PGj9Xk006zySU9tWeoJlSSCBEqBI6nc8RVKfnelIiqRpovbqo0ja42cl2rJI7jlwFG17j8eOleORLcvDjKTr+uXUGbzfaZj6+qk/z1MkrfQEy5JAAiVAkdTveIqkPjvTkRRJ00Tt1UeRtMfPSrRlkZQzI1+q1R6tGtVE1zbvPHKv/YeOo2W30err3GxjpStYlgQSJgGKpH6/UyT12ZmOpEiaJmqvPoqkPX5Woi2LpFQedOmqOoA8U4a0kd7r4JFfIK9SrF7+RSROnMhKe+JcWe7ajnNdxgb7GAGKpH6HUCT12ZmOpEiaJmqvPoqkPX5WorVE0soN4ntZimR872E+n7cJUCT1CVMk9dmZjqRImiZqrz6KpD1+VqK1RVKmuHftO4xzFy7j6rWb8PPzQ7o0qVC0UF68VLJIvM9EuiBTJK0MN5YlgUcJUCT1RwVFUp+d6UiKpGmi9uqjSNrjZyVaSyS37PoO3QZOc98nZYpk6v/f+eee+l/597ThXVDq2UJW2uLTZecu24hDR08iS+b0qFu9DEoUyafaS5H06W5j4+IAAYqkfidRJPXZmY6kSJomaq8+iqQ9flaiLYvkmfMXUa1RL7xdsyyaN6iBJ3NlVdlIuUJDQ3Hy97PqeKBjP/+Bb76YiiTxZI3k1AVrUaXsCzh9LggjpizDthVjEeDvT5G0MtpYlgQiIUCR1B8WFEl9dqYjKZKmidqrjyJpj5+VaMsi+fnmbzB88hLs2zBdiVRk199BV1CpfnesmTcET+fLbaU9Pl821OHAy7XaY8PikciSKR1F0ud7jA30dQIUSf0eokjqszMdSZE0TdRefRRJe/ysRFsWSde09pHt85AoUUCk93JlLT9fMBQF8uay0h6fL7t6425s2rEf88f3Vm11OJ0+32Y2kAR8lUBwiAPrNodiy/aHsxq8rBGoWsmJ2tUCkDhR5H/UW6sN+Ot8COYsdCLoIvvDKjsRyU5tHSiUL4nV0EjLOxxOfHs4GPMXm+lbI42KQ5WISLZp6o9UKSL3lLCP4v/vrGocejyfaqplkZRjfSrX745KZZ5Hi4Y1kC9PDiRPnlQ91D//3MOJX09j3KyV+OOvv9U5knJMUHy5vtx5APOXb8Ks0T2QIV1q9VgXrj5cF8qLBEhAj8DuPX7YtpO/LHXoSUby9TLm/pi9fh0I/NSfIqnRGa6MZNYsGsFRhPx6Cli0JP78DjVHJuaaRCQb1HMgkQcnEGbL8HCfBy89ApZFUm6zfc/36DtijntzTcRbyzu4pwzthGeezqvXKh+LcjqdmL/8Sxw4dALjBrZH6pTJ3S3kZhsf6yw2J84R4NS2fpdxalufnelITm2bJmqvPk5t2+NnJVpLJOUGsrHm4JGTOPn7GchRQJJ5zJghDfLkyoqSxQpGuX7SSuN8pey1G7fwWp1OeDJ3NgQEPMycdGhWF1XLleIaSV/pJLYjzhKgSOp3HUVSn53pSIqkaaL26qNI2uNnJVpbJK3cJD6XZUYyPvcuny02CFAk9SlTJPXZmY6kSJomaq8+iqQ9flaitURSFgHv//4nnPn7EnJnz4zSJQuHWwv508k/0bb3eGwKHInUqVJYaU+cK0uRjHNdxgb7GAGKpH6HUCT12ZmOpEiaJmqvPoqkPX5WorVEst/IuZBjgFyXTPlOHvIh8j2ZQ33p8LHf0LjjULXZJk3qlFbaE+fKUiTjXJexwT5GgCKp3yEUSX12piMpkqaJ2quPImmPn5VoyyJ5685dvFSzHRrVrYR3ar0OyT5Omb8Wt+/8g0WTPkLhAnkoklZ6gGVJIIEToEjqDwCKpD4705EUSdNE7dVHkbTHz0q0ZZHc9vVBdPlkKg5snIFU/+5evnz1Bjr0naiO/FkxayBu3LjNjKSVXmBZEkjABCiS+p1PkdRnZzqSImmaqL36KJL2+FmJtiySMqUtU9vHvlrgfjWi3PCfu/fQpuc4yDmTfTs1RudPpnBq20pPsCwJJFACFEn9jqdI6rMzHUmRNE3UXn0USXv8rERbFsmDR35B084jsGr2IBQpmCfcvW7cvINGHYbgzzMX1Ndje42kbAKS/0T26sYHwSGQY3yyZEwXToBdDyBT9iEhIUif9uFB455eXCPpKSmWI4HICVAk9UcGRVKfnelIiqRpovbqo0ja42cl2rJIBgeH4M0WH6PiayXR7YN3H7nXuQuXUbfFx+qw8tgUSTk0fOC4hao9g3o0d7dLvj5z8TpMXbBWfS1D+jSYOqwzShTJp/4tmdTeQ2dj5/8OqX/L1ycP/RCZMqTF2b8voWrDnuGeUXaoD+jWTJ2XKRdF0spwY1kSeJQARVJ/VFAk9dmZjqRImiZqrz6KpD1+VqIti6QnlV+/eRu3b99FjmyZ4O/v/Xe2yvu/h04KxNVrN1Gv1uvhRNK1gzxwSl8UK/QUpsxfgw3b92P7inGqbfOWbcTKDbsQOLmfetVju97j8VSe7Bjcs4VbJCU2W5aMKqM5ePwiZMmYHlOGfUiR9GQwsAwJxECAIqk/RCiS+uxMR1IkTRO1Vx9F0h4/K9FeEUkrDTBR9u69+7h56w4mzF6NpEkThxPJ8bNWqvd/zxn7MLN48fJ1lK/XBavnDFI7zN9pMwBVy72IVo1qqu+LlHYbOE2tAZXsqmQktywbg1w5MqvvD5u0BBcvX8OkIZ0okiY6j3UkeAIUSf0hQJHUZ2c6kiJpmqi9+iiS9vhZiY4XIul64CETFiMkNDScSPYcPAPp0qZGv87vubk8U64Zpo/sitdfKoEXa7TF0N4tUeX1Uur7x0+eVnIp0/I3b/+jRLJ9szeRLk0qnA+6jFXrdyFwSj88nS83RdLKSGNZEoiCAEVSf2hQJPXZmY6kSJomaq8+iqQ9flai471Iyk7yQvlzh1vPKfI4sHszVK9QGkXLN3dLpYA79ed51G7WV019hzocSiRFOFOmSIZ794Nx4IfjKPVsIYz9pB2SJ0uKW3dDrPBmWRIggTAEQh1ObN3pwNbtD99hz8sagSqVHKhSwR8BhpYQBV1yYEEgEHTR+0uSrD2p75cWkezQxoE8uQOMNNbpBH48HooFgfzZ0AEqItm0EZAsacz8UidPpHMLxvxLIN6LpGQk06dLjb4fRp2RHNanFSqXfUEhcWUk92+Yjhu37jwytS070ys36O7OYlIk+bNEAvoEKJL67CSSImmPn8loiqRJmvbrokjaZ+hpDfFeJGWN5M+/ncHsMd0Vk8jWSFYr9yJaerhGUuqo+X4fvFntNbRuXIu7tj0daSxHAlEQ4NS2/tDg1LY+O9ORnNo2TdRefZzatsfPSnS8EMnQ0FAEh4Ri+OQlCA11oH/XJkicOJE6T9K1a3vx5L4oVvgpTJyzGpu/+ta9a3vuso1YtWEX5PspkiVFuz4THtm1vXBSH2TPklEdaSRv9pmx6AusmDkARQvlpUhaGW0sSwKREKBI6g8LiqQ+O9ORFEnTRO3VR5G0x89KdLwQyZXrvsKg8YvCPfeQXi3xVo0ykHMkpy38XMmfXLLWcfboHni2aH71bzlHsueQmdi197D6t8ihnDOZOWO6SM+RlO+3b1oHr7/8rCrPcyStDDeWJYFHCVAk9UcFRVKfnelIiqRpovbqo0ja42clOl6IpCcPfO/+A1y9fgvZs2SI9M02cnyQvP1GDiK3clEkrdBiWRKgSJocAxRJkzTt1UWRtMfPdDRF0jTRqOtLMCLpLaQUSW+RZb0JhQAzkvo9TZHUZ2c6kiJpmqi9+iiS9vhZiaZIWqEVSVmKpE2ADE/wBCiS+kOAIqnPznQkRdI0UXv1USTt8bMSTZG0QosiaZMWw0ngUQIUSf1RQZHUZ2c6kiJpmqi9+iiS9vhZiaZIWqFFkbRJi+EkQJE0OQYokiZp2quLImmPn+loiqRpolHXR5G0yZpT2zYBMjzBE2BGUn8IUCT12ZmOpEiaJmqvPoqkPX5WoimSVmgxI2mTFsNJgBlJk2OAImmSpr26KJL2+JmOpkiaJsqMpNeIMiPpNbSsOIEQYEZSv6MpkvrsTEdSJE0TtVcfRdIePyvRzEh6SOvTz3fgxK+n3aUb1KmIIgXz8EByD/mxGAlERYAiqT82KJL67ExHUiRNE7VXH0XSHj8r0RRJD2l1GzgNpUoUQv6ncqqI/E/mRPq0qSmSHvJjMRKgSJofAxRJ80x1a6RI6pLzThxF0jtcI6uVIukhaxHJd2uXR6kSTyMgIMAddeHqPQ9rYDESIIHICOze44dtO/0JR4OAiOTrZZwakZGHXL8OBH7qj6CLfsbqTCgVuUQyaxZzT/zrKWDRkv9+35irOf7XJCLZoJ4DiRLF/KzZMiSLuRBLREmAIunh4Bg+eQmOnzyNS1evo0SRfBjauxWSJE4Eh9Pch7iHTWExEog3BIJDHFi3ORRbtlNcdDq1aiUnalcLQOJEZkT8r/MhmLPQSZHU6AwRyU5tHSiUL4lG9KMhDocT3x4OxvzFZvrWSKPiUCUikm2a+iNViphF3N+Pnz92upYiaZGe/HC36jEarRrWxCulinJq2yI/FieBiAS4RlJ/THBqW5+d6UhObZsmaq8+Tm3b42clmiLpIa1LV64jc8Z0EJFs1mUEOrV8S62Z5K5tDwGyGAlEQYAiqT80KJL67ExHUiRNE7VXH0XSHj8r0RRJD2lVbdQTGdOlwY1bd/B88YIY1KM5/Pz8KJIe8mMxEoiKAEVSf2xQJPXZmY6kSJomaq8+iqQ9flaiKZIe0nI6nbh+8zaSJkmMFMn/W5jLjKSHAFmMBJiRND4GKJLGkWpXSJHURueVQIqkV7BGWilF0iZriqRNgAxP8ASYkdQfAhRJfXamIymSponaq48iaY+flWiKpBVakZSlSNoEyPAET4AiqT8EKJL67ExHUiRNE7VXH0XSHj8r0RRJK7QokjZpMZwEHiVAkdQfFRRJfXamIymSponaq48iaY+flWiKpBVaFEmbtBhOAhRJk2OAImmSpr26KJL2+JmOpkiaJhp1fRRJm6w5tW0TIMMTPAFmJPWHAEVSn53pSIqkaaL26qNI2uNnJZoiaYUWM5I2aTGcBJiRNDkGKJImadqriyJpj5/paIqkaaLMSHqNKDOSXkPLihMIAWYk9TuaIqnPznQkRdI0UXv1USTt8bMSzYykFVrMSNqkxXASYEbS5BigSJqkaa8uiqQ9fqajKZKmiTIj6TWizEh6DS0rTiAEmJHU72iKpOo4NNkAACAASURBVD4705EUSdNE7dVHkbTHz0o0M5JWaDEjaZMWw0mAGUmTY4AiaZKmvbookvb4mY6mSJomyoyk14gyI+k1tKw4gRBgRlK/oymS+uxMR1IkTRO1Vx9F0h4/K9HMSFqhxYykTVq+ER4S4hvtiMutSJTIXOspkvosKZL67ExHUiRNE7VXH0XSHj8r0RRJD2nNXbYRh46eRJbM6VG3ehmUKJJPRTIj6SFAHyp26ZIftu7w96EWxa2m1KruQNq0TmONpkjqo6RI6rMzHUmRNE3UXn0USXv8rERTJD2kNXXBWlQp+wJOnwvCiCnLsG3FWAT4+1MkPeTnS8VEJGfODUBwsC+1Km60JWsWJ95rSJH0ld6iSPpKTwAUSd/pC2kJRTL2+oMiaZF1qMOBl2u1x4bFI5ElUzqKpEV+vlCcIqnfCxRJfXbeiKRIeoOqXp0UST1u3oqiSHqL7KP1UiQtsl69cTc27diP+eN7q8i790Mt1sDij5vAqdMhmDbbnxlJjY4QkWzxPpAja4BG9KMhIaFObN4Rii3budRAB2jVSg5UqxiARAF+OuGPxJwPCsX8QCDoopn6jDQqjlQiItmhjQP58phZQOxwOnH4WCgWBPJnQ2cIiEg2b+yHFMli5pc8qZnPM512xocYiqSFXvxy5wHMX74Js0b3QIZ0qVXktdsPLNTAor5A4Ow5B6bP4dS2Tl+ISDZt7ETmTGZEw+FwYscucM2qTmcAqFLRgYrlAH9/M/1x6bITi5b6USQ1+kNEsn3rUOTKGbO4eFK90wkc/9mJhUvM1OfJPeNTGRHJ9xs4kSRJzD8b6VMliU+PHuvPQpH0ALnT6cT85V/iwKETGDewPVKnTO6O4mYbDwD6WBFObet3CKe29dl5I5JT296gqlcnp7b1uHkrilPb3iL7aL0USQ9YX7txC6/V6YQnc2dDQMDDvw47NKuLquVKcY2kB/x8rQhFUr9HKJL67LwRSZH0BlW9OimSety8FUWR9BZZiqRxssxIGkfq9QopkvqIKZL67LwRSZH0BlW9OimSety8FUWR9BZZiqRxshRJ40i9XiFFUh8xRVKfnTciKZLeoKpXJ0VSj5u3oiiS3iJLkTROliJpHKnXK6RI6iOmSOqz80YkRdIbVPXqpEjqcfNWFEXSW2QpksbJUiSNI/V6hRRJfcQUSX123oikSHqDql6dFEk9bt6Kokh6iyxF0jhZT0QyNBRYvZbnVOnCf+E5B/LlM/dKPoqkbk8AFEl9dt6IpEh6g6penRRJPW7eiqJIeossRdI4WU9FcsXqAPz8S8znWRlvYDyosGnjUIqkj/QjRdJHOuLfZlAkfac/KJK+0xfSEopk7PVHgjr+JzQ0FAEBkWcGb925i5CQEKRP+/CgcU8viqSnpPTLUST12ZmOpEiaJmqvPoqkPX4moymSJmnar4siaZ+hpzUkGJE8c/4iqjXqhW0rxiFH1oxuPv/cvYfeQ2dj5/8Oqa+VKJIPk4d+iEwZ0uLs35dQtWHPcCxLlyyMAd2aIU+urOrrFElPh5p+OYqkPjvTkRRJ00Tt1UeRtMfPZDRF0iRN+3VRJO0z9LSGBCGSjdoPwZHjpxSTiCI5b9lGrNywC4GT+yF58qRo13s8nsqTHYN7tnCLZOCUvsiWJSPkYPLB4xchS8b0mDLsQ4qkp6PMZjmKpE2ABsMpkgZhGqiKImkAoqEqKJKGQBqqhiJpCKQH1SQIkbx4+TouXLqChu2GPCKS77QZgKrlXkSrRjUVri27vkO3gdNw7KsFOHfhsspIblk2BrlyZFbfHzZpCS5evoZJQzpRJD0YYCaKUCRNUDRTB0XSDEdTtVAkTZG0Xw9F0j5DkzVQJE3SjL6uBCGSgiDo8jVUqNf1EZF8sUZbDO3dElVeL6VIHT95GiKX+9ZPw83b/yiRbN/sTaRLkwrngy5j1fpdCJzSD0/ny02RjKVxSpGMJdAe3IYi6QGkWCxCkYxF2DHciiLpO30hLaFIxl5/JGiRdDqdKFq+OaaP7IrXXyqhqJ/68zxqN+uL7SvGIdThUCIp30uZIhnu3Q/GgR+Oo9SzhTD2k3ZIniwp10jGwlilSMYCZA9vQZH0EFQsFaNIxhJoD25DkfQAUiwWoUjGHuwELZKCWTKSw/q0QuWyL4TLSO7fMB03bt15ZGr7xs07qNyguzuLyc023h+sFEnvM/b0DhRJT0nFTjmKZOxw9uQuFElPKMVeGYpk7LFO8CIp09jVyr2Ilh6ukZSuqfl+H7xZ7TW0blwr9nqKdyIBEiABEiABEiABHyOQIETy/oNgBF26iuqNe2PD4hHImT0zkiROpLpi7rKNWLVhFxZP7osUyZKiXZ8Jj+zaXjipD7JnyYg7/9zDtq8PYsaiL7Bi5gAULZTXx7qTzSEBEiABEiABEiCB2COQIERSpq9FAl1XhvRpsGftZPVPOUey55CZ2LX3sPq3yOHUYZ2ROWO6SM+RlO+3b1oHr7/8bOz1Eu9EAiRAAiRAAiRAAj5IIEGIpCfcb966gwfBIeog8oR+3bv/AAH+/kj8b9Y2Io+Yvp/Q+dl9/ivXbuLQjyfd63bt1sd4EvBFAvKmscvXbqoTMZImSexuohzB9uJzhSJ9y1hISChCQkORLGkSX3wkn2uTbBh98CBYbQw1cR04dAJZMqdH3tzZoq3O9aa4tKlTwd+frwY2wd6X66BI+nLvaLatwjvd0KV1PdSu8oq7hk07D2DElKXuTGx0Vb/XcRiKF8mHXu0bYPf+I/jxxO/o2LyuOyTs9zWbGKfCXG84CnueqDyAHE5/70EwhvdpZfR5vjv8M5p1GYmfdi00Wm9CrOzkqTOo27K/enQ5eeHbTTMTIgafeua/zgVh+OSl2HPgqLtd8sawbm3eVTNCz5RrhqVTP8azRfM/0u6pC9ZixzeHsHbeEJ96Jm81ZmbgOnz7wwnMH9873C2E0ZwxPfBKqaLR3nrf9z+hVfcx+N+6qUrY+wybjZaNaqBA3lxaTW7y4XBUK/8iGtWtFGn8+m17sfbLPRDhdF1SftyA9uqfVu4vn7vjZ63EmP5to3y1sdZDMMg4AYqkcaSPv8JIRXLHfoyYuswjkfzjzAUkT5oE2bJkwLK127H5q2/VGlLXFfb7j/9pvd+CqERy4LiFuH//AUb0bWO0ERRJczgdDqdaviLyMWxSIEXSHFqtmlynXpR+rgh6tq+v3hj255kLWLB8EwoXyIMm71SNViTl5RK3bv+DfE/m0Lp/XAuauXgd9h86joUT+zwikrNGd8drLxaL9pFu37mL0+eCUChfbiVjIqBSlxxhp3NFJ5KHj/2Gxh2Home7Bqhd9VXI8XrHfvkDc5ZswJKp/dTtrNz/xK+nUa/1ABzeNjfK2TGdZ2CMeQIUSfNMH3uNnoik/GX4v4PHcPXaTfWhLBlH16Hso6cvR/4nc+L54gXxXqdhqoxrY9GiSR9h8rw16vtv1Sjz2J81NhrgqUjKOtvxs1eqs0iF3cddmqDgUw//8pfXdMq62u17DuL02SDUr10eHZrVRbJkSdQH7uJVW7Bo1Va1KaxgvtyQTJpkJGUqTz6cR3/c1v1+9+kLP0fqVCnwfr0q+O3Pc+g3ci4+6tgYi1dvgfyilWz04AmLcOHiVXXvcq88i487v480qVNCliWMm7kSm3d9qyRY3i3ft/P7MU5VxQZnb95DNskJJ1dGMrrxP2rqMtWUU6f/xv+++xHPFS2AEX1bI3eOLLh+8zba95mguMtVpOCT6NupseqzmPrZm88XV+qeMm+NeiXttk/HqrEf9pKxKVPWIhvyprG9B4898rOyacd+fH/0JPp3baL64KPhs1Gr0stY9vkOVVXLBjXwbu3y6v8fPPJLlD8HcYWXJyIp4zVRogD1uXPw6C/q5/3DFm+rt7H9fvo8PhoxB8um98ekuZ9BXgksX5fsZN3qZdCgTgXFacyM5fjjr79RqewLaPRmRffn/ZnzFzFkQqD6OXgydzZcuvLw8yWyjORnG7/GJ2Pm48j2eao9Ea/xs1c9cn/5PRLVZ5WcqCIvCClSMA/8/f3R98P3ULzwU1i5fpf6vJQXhrxVvQwa1a2IrJkzJNjPNl8YyxRJX+gFw20QkZS/QAsXzOOu+eff/sLRE7+7M5JL12xHgbw5IRuPdu87oqYQXNMfHfpORPHC+dDknSoYP2uVOoT9k65NVV3PFSuADz+erL7/wftvGG65b1bnEsmGb1ZE2jQp3Y3c+b8fFGfJSMovtTrN+qHNe2+gTOliEL7fHv4ZWz8do9YnyS9HEfZ2TeogRfKkaoPXmE/aqcPuZdlBz8EzlMyXfak4tu4+qE4TEJGUdbvPVW6FNfOGuN+m1HfkXGRMlxrd29ZXyw4atBusPkjr1SyLZMmSQqYJf/vjHArlfwJ3797HJ2Pno9wrz6Fbm3fUB/nCVVvUhjL5sP/qfz+o8qVK6GUofLPHHm1VRJGMbvyLKP74yx/o1Lwu0qZJhWkL16JYoafUebOylvrzzd8ouUySJDHmfbpR/QJeNXuQuml0/RxXWHmznW16jkPeJ7Lho06No7xNdAwXr96KXXt/UFO9rrFf4dWSeLd2OZw9fwlDJwWqt5LJH00/nfwzyp8Dbz6jybo9EUkZryKQIngyZT125gqULllE/bwLg3fbDMTRHfMgM0nyGdW7Q0P1B5DMOMkfsdUa9VKfJfLZI+tTRQh3rByH0FAH6jTvp9aqtn6vljrppN/IeWjVqEakIil/BMvvHhHZt2uWxdP5nkDObJncOFyfkWHvL2c1R/VZJVPkH4+ah7njeiJxokTqj/Jvvv0RMhM0sEdz9cev8JHP5ME9WyTYzzaT4023LoqkLjkfjpMf5hxZM6oPbNf1x18X1BSHa7e6LHT/+dQZ/PzrX+qvzCnz12DlrAF45um8cImkiGJkU9thv+/DGIw1zSWScmh96lTJ3fWKKJZU2ao2kEzLhh371HvZ5ZIsbpm6HyphK//qc49M10lGLGOGNGoaqEW3UciaKb17ijzs1LanIimZNlkD6LokM/nDsV/Vq0G3f31QZTCnDe8CWWMm65imDPkQBZ7KBT+/hLEQPqJIRjf+5RdzyeIFVVZMrq27v8OQiYH4es0kxevevQc4cvwU/jjzt5IZEUvXetaI6/vC9rOxARmHK6raqCfefaM8WjasEa1Ihl0jGZZhZCJ57KsF7nEsP3NDerZQMiNXVD8HcQWhpyIZdryu2bQHgZ9tVetIw4pkZFPbMruxccd+9aY2ueTzRmZPVs8ZhH/u3odMZW8IHOmesYhpjaR8dk1b+Dnkf+WSLKZ8xrn6I7Kp7aj6KLKpbVmfnydXVrz3dmVV/4lf/8LIqUvVHw8zFq9LkJ9tvjCWKZK+0AuG2xDT1LYchfRBr3E4+fsZVHytJHJkzQRZ1P3pjP4q00iRDN8hnkxtyy87cbKw6yWlH1o3rgnJZEYUjGGTlkBk5pNuTZVwdm71NurVfF3dWEckw/4ydWU4ZR1U4fxP4MRvf6kpw5mjuqnp7v6j52HvwZ+UeMrUVrumdYzt6jQ8lI1VF1YkYxr/EUXy5O9nUbfFx/hq9UTcvH0HzbuOQppUKVD6ucJqs9UX0Yhk2H429jBxuCLJSIoI9Ov8nsciGZZhTCIpL4vo0LwualQo7c70R/ZzEFcQysyELJlxrTGUdsu632IVmmPe+F54qWQRtdQirEhKVlGW2MgftTGJpCwN+Oa7Y8iTM2s4JB2av4lLV25g6MTF4dYVxySSrkrkZ0x+vwSu3qqynK4scUSRjO6zKjKRlM9KmdHJnCFduPZOGtIJwcEhCfKzzRfGMkXSF3rBcBtiEsnte75H5/5TIK+BlEyVXPIDHplIfrp2h/qLNewHWULNSEbctR12s42sMRI5c+0mlQ9SOb90/MAOqFquVLQiKTxlGrpTi7ceEUlZI1miUkt330iByKa2w4qkvCu+evnSShDlmr/8S7XzU0TSdck0lGRUh0xYjD4dG8f79a7yC2vg2AXql2JM4z/iL2bJ4MofCj9sm4sJs1bil9/PYM7YnuqILMlMSgYnqowkRTL8h9vEOavx2aavsWXZaKRI/l8GXUrJpij5WnR/dFkRSU9+Dgx/9BqvTsaerFnf/dkk9zE6fwddQaX63dXLNfI+kd2ySMqyAFnOIpcsaTp1+ryarYh4/fTLH3j3g0H47suZ7r6KTiRd/Re2HlluIFloeamHLJ+Rvg17/+j66JdTZ/BWy/44tHWO+3goWTf5RpVX0aRelShZJ7TPNuODTqNCiqQGNF8PiUkk5WgGmU6V6QtZJ/PlzgOQX3iRiaScZ9i293hsDBypfnGmS5sanT6elCDXSEYnkrKzsmW30WqK6NVSRSG/8OQNSLvXTFJnk0b3y1FkfeGqzRjepzUyZ0yrpp83bt/vlhP58H62aAG0alhDbTT4ZOwCvFn11XBrJMOKpEz/5M+bU62RksXygycsVuucRCQlQ1CowBN47pkC6pB+ORpH1iyJ7Ma3S3YI3713H0mTJsagcYsQEOCvjiGJafyLSGbKmBY92tZXv2SHT16CJ3JmVbEyFbhtz/eYNao7HgQHqz6ObmqbIhl+VF29fgvVGvXEs88UQK8ODdQaOrVre8WXKPp03kh3betmJKP7OYgrY90ljTJjIZvrZEPS0ImBkDXv6xYOUzuxrWQk5XNfhK5FwxrqZ0PW9wonmUmpXv5FyJrFbbsPotRzhdR09stvdECDNyui8VuVcPT4KbVhLarNNvKzIPLX7N1qyJc3Jy5euob5yzept8FtXzFOrVuNeP+OfSdF+VklS0ier9ZGrZGUTYFyydrmOUs3qD/kij79JM5duIxV63epz8KE9Nnma+OXIulrPWKgPTGdIylTI90GTlM/4HLJYvWd/zuE5TM+QbHCT6FTv8koVjiv2jgi068d+k5yn/n2/ebZaqOI6/sGmuvzVXh6jqQsD5C1knLJtPHIfm0UW7kiE0mHw6F2n8oB5K16jFE7teV6tVQxtUvSleWSvhkwdqFadylrjmRq5+Xnn0G3D97FsZ//QP22gxBWJPd+dwy9h89W5aUdBZ/KraZip4/sqrKT42aucLdR1n0O7tk8Xp7TJhxa9xzrZirCLBueYhr/rs0LrrdhSfZGds3LHwSyNED+kJLdpHKVKV1c/WxEl5F09bPPD/RYaqBsuhA5D3vWoJxyIP0ja7Sj+1kRWfjq3802kY19mdqWTWvVK5RGdD8HsfSoRm4ja3Rl04lrPMpnwJj+7dRuZrlkvAq/lmHW9I6b9XBqW8apZPFks41IpxyDJTMp8tkgMxbCStZUyjrDsPXPGNlV/fH06ec7lLjKJScTyB9nrRvVRMO6FR95NjmzUjLO0i+uS2IGdG3qPhM04v1ljXlUn1VSh/xRLYIqlwjl88WfxoTZq9SubdclSxfkSKOE9NlmZGAZrIQiaRBmXKtKBEbeOiDZqpgu2a2aJHHiR47siCkuoX1fMgaXr95A9iwZLMmZ7J4USUmfLnWkb+1wvQVENuV4ckn5v4OuqoxzxKM4XHVlSp/GUhs9ua+vlZE3bMh2olQp/9sk5WpjVOPfleGRLIwsLXAt/wj7bOeDriB92lTxfm2pN/tTNnbIz0q6NCkfmeY2dd/ofg5M3SM26pE/fi5evqbOU8yYPo2tW8rbbq7fuI0M6VK7NynJ54/8PMjObMkchr1kylp+jjz97Ln/IBjXrt9SP3OR/dxFvH9MfSSZScn+h22X6zMsbaqU4X4nJaTPNluDwHAwRdIwUFZHAiQQtwlEnCqM20/D1pMACZCAdwlQJL3Ll7WTAAnEMQIyJSrT2K5DxuNY89lcEiABEohVAhTJWMXNm5EACZAACZAACZBA/CFAkYw/fcknIQESIAESIAESIIFYJUCRjFXcvBkJkAAJkAAJkAAJxB8CFMn405d8EhIgARIgARIgARKIVQIUyVjFzZuRAAmQAAmQAAmQQPwhQJGMP33JJyEBEiABEiABEiCBWCVAkYxV3LwZCZAACZAACZAACcQfAhTJ+NOXfBISIAESIAESIAESiFUCFMlYxc2bkQAJkAAJkAAJkED8IUCRjD99ySchARIgARIgARIggVglQJGMVdy8GQmQAAmQAAmQAAnEHwIUyfjTl3wSEiABEiABEiABEohVAhTJWMXNm5EACZAACZAACZBA/CFAkYw/fcknIQGfJHDv/gP8eOJ3nDp9Hg8eBCNHtkwoXbIIUqdM7pPttdOooydO4fLVG8ieJSMKF8jjrurWnbv47vAJlHq2cLx8bjvMGEsCJBC3CVAk43b/sfUk4NMEfjj2K/oMn42z5y8ha+YMCA4JwdVrN1Wbh/VphTervRZr7Z+x6Ass+3wH9qyd7LV7du4/Bdv3fI+UKZLhq9UT1f/KdeLX06jXegBWzxkUTjC91hBWTAIkQAKxRIAiGUugeRsSSGgELl6+jvL1uqBgvtwYP7AD8ubOphAEXb6GyXM/Q+aM6dCldb1YwzJt4edY/sVOr4vkb3+ew59nLqBTy7fQ9v3aFMlY62HeiARI4HEQoEg+Duq8JwkkAAKDxy/CinVf4culo/BEzqyPPPHde/eRPFlSBAeHYObiddiwY5/KXJYuWRg92jZAkYIPp4b3HzqOqfPXYvaY7kiR/L8M37BJSzCmf1tkz5pR3efAoeN45YWiWLp2O879fQnvvFEOTd+phiyZ0mHPgaPoO3KuyoY+V7SAqrd2lVdQu8qraNVjDD54/w2cu3BZlUuXJhWSJkkMh9OJgd2budsdEhKKjv0moexLxdGobqVIe1AyknLlyJoRi1dvxZ7PpyBDutSPZCSDLl1F72Gz1XS/tEmytXWqvooOzd5EokQBuHfvgWpXzYov4bsjP+Obb39EtiwZ0L1tfWTKkBaT5nyGwz/9ipeffwYtGtZAiSL53O05fTYIY2eswIEfjiNp0iQoU7o4erStr9rBiwRIgARME6BImibK+kiABB6KWrO+yJUtM6aP7BotkYHjFmLV+l2oV+t1Ne0buHqryuhtWTYGuXJkxpc7D6DH4BnYt34a0qROqeo6eOQXNO08AhsWj0DeJ7Jj/OxVmLdsoxKyd2uXQ6KAAEyYvQqtG9dSWc/fT5/HyKmf4n/f/YiPu7yv6iicPw/y5c2Jl2q2U//OkD4NXny2ENKmTomn8z8BEWFX/fJ9mbIWUYxuetolkv27NsHrb3VGiwbVlfxFnNr+61wQJs5ZrdaKZkyXBr/+cRZTF6xVbZU2y5pKV7tEeIsXyYf1W/fiyPFTqq3CqlC+J7Bywy6EhoZi3cLh6uuuLPDzxQsqkb52/RbmLNuIZwo+iZmjunFkkgAJkIBxAhRJ40hZIQmQgMhN8Yot0eSdqujdoWGUQFzi07JhDXT74F1V7vrN23i1dkc0fqsS+n74nsciufbLPdj26VgkS5ZE1TNq2qf4ev8RbAwcqf4d2dS2S9ga1KmAPh0bIXHiRKrs7Tt3Ubpmu3Dtb9FtFB48CMGSqf2ifB6XSE4a0kndb/rCz7Fj5Xhcu3EryjWSd/65p77fZ9hspEqZXAmfq10fd34fDetWVPcTiWzUfgjGfNIONSqUVl+TDGrb3uOxc9V4JdFjZixXUr7rs4nu7K1M5w+ZsFhN6Yss8yIBEiABkwQokiZpsi4SIAE3gRdrtEW18i9icM8WUVL59ocTaN51lJInmYJ1Xe+0GaCmvRdP7uuxSG7Z9a3KYrquRSs3Y/T05fhp18IYRTKsnLniR0xZCpFTkbK/g66qDKus9axarpRHInnr9j+o+G43VK9QGiKqYTfbiGjPWboRK9fvgkxzuy7JJMozu0QybLtk2r9qo56YNbo7XnuxmAo5fvI0hNWnM/qjeOF8aNZlJL47/LN7WYCUuXn7H7VkYOXsgSozyYsESIAETBKgSJqkybpIgATcBN7rOAx37t7D2nlDoqQia/8+6DUOgVP6omSxgu5yIkRyVNCy6f3dIrl33TSkTRP11HZEkVy6ZjuGT16iLZKn/jyv5HFIr5b45dRf2LTzAL5aNUGtYYzqCpuRlDKLV21RmdFR/T5A72Gz3NPiU+atwczAdSoLKwKdPUsG1VZZpxmVSJ4PuoLK9buHE8lfTp3BWy37u0WyfttBCPD3R7umdR5p4rPP5EfqVCk4QkmABEjAKAGKpFGcrIwESMBFYO6yjWqd4sTBHVG57AvhwEjG7Y+/ziNt6lSo8V5vdGrxFto2ebjDWTaaPF+tDepUew3D+7TCvu9/QqvuY8Jt2pGsm8hm2DWSMYmkrKGctWQ9vt00092WyDJ/YRsq09kid5LRc61fjK6HI4qkPEvlhj1UiGyqca2vFOGTZ5cNRK5LNgOdPX/Rlkj2GzkX+74/jk2BI91T/FK/0+mEn58fBycJkAAJGCdAkTSOlBWSAAkIgfsPglW2TDbOyG7kV18sBofDoTaezFi8Dm/XKPtQznqMwc+nzqBT87pqk4tk8TZ/9S2WTv0YzxbNDznQ/PmqbdSZkzJF/MvvZzBp7mdKzKyIpBwW3rDdEHV+ZRE5LNzPT+34lk0tkU1tyzPs+OYQPvz44bmTX6+djIwxrDGMKJISt2bTHvQfPU/V4RLJ8bNWqqOIRvRto3Zhy1pO2bke3dS2JxlJ16ae118qgQ+a1FaHnwvbBcs3Yc7YnmpHOi8SIAESMEmAImmSJusiARIIR0DWCU6etwbL1m4P9/UKr5ZE+2Z11C5t2XDTZ/gsHDh0wl1maO+WqFu9jPvfMk0tU8Eij3LIt6w7XL1hNzYEjlTnU0rmc3OENZJyTzkiyLVGMtThwMcj52Ld1r2qXsmANq9fXW2qiUokRYZLVmmtJFYENKYrMpGU9ZC1m/VTQu0SSclyfjR8Nr4/elJVKcf3yGHtKVMkx8KJfdybfcK26++gK6hUvzvmjOmBV0oVVXEnT51B3Zb9sXzGJyhW+Cn1NdmAi3zcRAAAAzFJREFUM3RSoMqiui6ZPp84qGO4LGVMz8LvkwAJkIAnBCiSnlBiGRIgAVsEZGr10pUbat1jlszpkeTf3dFhK5Xd2jf/394dozQQRVEA/SQrEAIKVnYWrskNCIKtjZ21hYVbcBdW1u5CEKzERDv5aVWUcLt7ps8N77wpLpnJzNv7ODxYjeXy+32I8zmOzy+v21cszvsAdz3Wm4+x3nxuf13863Lvw+PTOLu8Gfd3V+Pk+GjXr/z1c7McLpaLsb/ai2dPy3npfj74/Sfv+BcKJECgUkCRrFy7oQkQ+I/A6fn1mAV2/unHQYAAAQLfBRRJZwUBAgR+EJj3JF5c3W7fejMvxTsIECBAQJF0DhAgQIAAAQIECIQE/CIZghRDgAABAgQIEGgTUCTbNm5eAgQIECBAgEBIQJEMQYohQIAAAQIECLQJKJJtGzcvAQIECBAgQCAkoEiGIMUQIECAAAECBNoEFMm2jZuXAAECBAgQIBASUCRDkGIIECBAgAABAm0CimTbxs1LgAABAgQIEAgJKJIhSDEECBAgQIAAgTYBRbJt4+YlQIAAAQIECIQEFMkQpBgCBAgQIECAQJuAItm2cfMSIECAAAECBEICimQIUgwBAgQIECBAoE1AkWzbuHkJECBAgAABAiEBRTIEKYYAAQIECBAg0CagSLZt3LwECBAgQIAAgZCAIhmCFEOAAAECBAgQaBNQJNs2bl4CBAgQIECAQEhAkQxBiiFAgAABAgQItAkokm0bNy8BAgQIECBAICSgSIYgxRAgQIAAAQIE2gQUybaNm5cAAQIECBAgEBJQJEOQYggQIECAAAECbQKKZNvGzUuAAAECBAgQCAkokiFIMQQIECBAgACBNgFFsm3j5iVAgAABAgQIhAQUyRCkGAIECBAgQIBAm4Ai2bZx8xIgQIAAAQIEQgKKZAhSDAECBAgQIECgTUCRbNu4eQkQIECAAAECIQFFMgQphgABAgQIECDQJqBItm3cvAQIECBAgACBkIAiGYIUQ4AAAQIECBBoE1Ak2zZuXgIECBAgQIBASECRDEGKIUCAAAECBAi0CSiSbRs3LwECBAgQIEAgJPAF+kTZxlu+F60AAAAASUVORK5CYII=", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot an interactive bar chart\n", "fig = px.bar(data_selected, x='Country Name', y='2020', \n", " title=\"Countries' GDP in 2020\", log_y=True)\n", "fig.update_yaxes(title='2020 GDP')\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "2353e35a-a4d2-441c-824c-1c17f407a69a", "metadata": {}, "source": [ "The two figures below show how the total global GDP in 2020 is distributed by region and income level. Run these cells to see the pie charts showing the percentages. Hovering over each section shows you the GDP and the number of countries in each region or income level." ] }, { "cell_type": "code", "execution_count": 8, "id": "9f5d0b01-b73a-4f56-8e56-1da91f126043", "metadata": {}, "outputs": [], "source": [ "data = pd.read_csv('Files/GDP_region.csv')" ] }, { "cell_type": "code", "execution_count": 9, "id": "fcdb1ae0-17cb-401d-a82b-fcc58049bb7a", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "customdata": [ [ 37 ], [ 58 ], [ 42 ], [ 21 ], [ 3 ], [ 8 ], [ 48 ] ], "domain": { "x": [ 0, 1 ], "y": [ 0, 1 ] }, "hovertemplate": "Region=%{label}
GDP=%{value}
Number of Countries=%{customdata[0]}", "labels": [ "East Asia & Pacific", "Europe & Central Asia", "Latin America & Caribbean", "Middle East & North Africa", "North America", "South Asia", "Sub-Saharan Africa" ], "legendgroup": "", "name": "", "showlegend": true, "type": "pie", "values": [ 27118700000000, 22133900000000, 4743150000000, 3106900000000, 22546000000000, 3482470000000, 1706090000000 ] } ], "layout": { "autosize": true, "legend": { "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "2020 GDP by Country's Region" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAFoCAYAAADkaRuEAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQVU1NsWxr+hRcTuLq7d3a0Y2C22XhUsFANbbCzEwO722nnt7u7ubqXzrX18/7kDzMAwTMHss9Zb7+qc/J2D87HjHFlkZGQkuDABJsAEmAATYAJMgAkwgXgSkLGQjCcxrs4EmAATYAJMgAkwASYgCLCQ5IPABJgAE2ACTIAJMAEmoBEBFpIaYeNGTIAJMAEmwASYABNgAiwk+QwwASbABJgAE2ACTIAJaESAhaRG2LgRE2ACTIAJMAEmwASYAAtJPgNMgAkwASbABJgAE2ACGhFgIakRNm7EBJgAE2ACTIAJMAEmwEKSzwATYAJMgAkwASbABJiARgRYSGqEjRsxASbABJgAE2ACTIAJsJDkM8AEmAATYAJMgAkwASagEQEWkhph40ZMgAkwASbABJgAE2ACLCT5DDABJsAEmAATYAJMgAloRICFpEbYuBETYAJMgAkwASbABJgAC0k+A0yACTABJsAEmAATYAIaEWAhqRE2bsQEmAATYAJMgAkwASbAQpLPABNgAkyACTABJsAEmIBGBFhIaoSNGzEBJsAEmAATYAJMgAmwkOQzwASYABNgAkyACTABJqARARaSGmHjRkyACTABJsAEmAATYAIsJPkMMAEmwASYABNgAkyACWhEgIWkRti4ERNgAkyACTABJsAEmAALST4DTIAJMAEmwASYABNgAhoRYCGpETZuxASYABNgAkyACTABJsBCks8AE2ACTIAJMAEmwASYgEYEWEhqhI0bMQEmwASYABNgAkyACbCQ5DPABJgAE2ACTIAJMAEmoBEBFpIaYeNGTIAJMAEmwASYABNgAiwk+QwwASbABJgAE2ACTIAJaESAhaRG2LgRE2ACTIAJMAEmwASYAAtJPgNMgAkwASbABJgAE2ACGhFgIakRNm7EBJgAE2ACTIAJMAEmwEKSzwATYAJMgAkwASbABJiARgRYSGqEjRsxASbABJgAE2ACTIAJsJDkM8AEmAATYAJMgAkwASagEQEWkhph40ZMgAkwASbABJgAE2ACRickg4JC8Onrd4SGhiNThjRIbmsT6y59/f4L/gGByJY5A8zMZErrRkRE4tuPX/j2/RdS2idHurSpYG5mprLfsLBwvH73SdRLkTxZgk6Jn38gPn/7iVT2yZHK3g4ymfI5JmiQeDYODQ3D2n8OI3f2TKhZuWQ8Wye8+o9ffvj+0w/p0qRMMN+Ez0a/PRw5dRWv3n1Cg5rlkCVjWv0OruXRIiMj4R8QBAtzc9jYWGm5d+6OCTABJsAEEgMBoxGS124/gufctXj09HUUbnWrlYHHgE7IkC5VlL+/cvMhhk1ajI+fv8n/3rVbc/Tp7BRFrI31WoGDxy+JLzyppEltjyF/t0GzBlWi9BkcEoqJs1dj58Ez8r93yJsd3hNdkSNrRrX388u3n5izZCtOXbwlxKtiaVK3EhrVqYDKZYsK4fvs5Ts06eIRpU62LOmRMV1qVCxdGE0bVFEqOMo17BNlTSS4C+TLgXbNaqNhrfKxzpXEbflGfYWYmTWun9rrSkhFEo+zfDfj0InLMfaifdNaaO5YFZmNQFidu3wHF67dQ8cWdZAxfZqELFlp22GTfLHvyAVsWDgGxQvlTVD/ys4One28ObOgrVNNOMZxDhI0OIA37z+jfnt3FCmQG5t9xyW0O27PBJgAE2ACiZCA0QjJjTuOYpL3WlQqUxilijrALyAQu/89J4RY6WIOWO09Ui4QSWw27zFG4O7j7ISUKe2wbe8JPH3xDm69W6NHh0byrShco6uwajatX0UIlQtX7+Hs5dvi8xWzh6N8qYLyutKXPP0dCdhnL99jw44jov2RzbNgnyJ5nFt8+uItDJmwUIilkkXyo2yJAsLy9uHTV/x76grevPss+ri031f0++TFWzTtOkqIlgqlCyEgIAgkRK/feSwfa/380ShRJF+UsSUhSUIzLCwM7z58lbcZ0qcturdzVDlXfQvJ+49fosvAqYJJIYecqFKuGOxsbXDv8UsQL/r73p2aYGDPlnHy1XWFRat3Yf7KHdiyeBwK/5Vb68NNmbcO67cfwd6104RFOCEl+tmJfg7GunURglJX5fPXHxg8bgHy5MyMie7ddTUM98sEmAATYAJGTMBohOSNO09gbm6GogXzyHH9+u2Pik1cxJ+PbpktXN1Upi/YiDVbD8FrbF+59e3Tlx9o3HkErK2tcOKfuXLX9dY9J9C4bkUks7GW9+uzYjt81+wWX7L0ZUuFXOTVmg8AWSA3LRoLaytL8ffey/7BknV7MGl4D2E1i63QfOu0HSKE0eiBzmjfvHaU6uQKPHzqCkZPX47j2+ZGEZJkHZ08omeUta/75zAWrNop6m1bOiGKVZSEJK319I558jYkPju5ThZ/loSqsvnqU0hSWEEn10m4ee+pEPgDe7SAubm5fFr0i8LkeevE2kxBSC5ctVPsKe0bWQ8TUiQhGf3snLxwE/1GzBG/nBzbOjshQ3BbJsAEmAATYAKxEjAaIalqlvSFSF+Mila5qs0HCEvlzSPLYWHxnygZOWWJsGLG5Ta8ff8Z2vWdKKyfS2e6i6G37z+NMTOWY2jftujW9j9r3vPXH9DYeQSqli8G3+luscIk1+2KTQfQoXkdjBrYSWVdcvPa2yUXrm1VYkBqLFnIyCq7Zt5/LnBlQpLauI1fINzHyqyYUp+SkKxfoyxqVS6FLXuO4+qtR8ibKwu6tnFEi4Z/BDNZeGlNZA0li6FioT6GefoiZ/ZMGO7SXuVaKSZw4Fgf4f7cuHCsyjhWEuGSxffDp2+YvWQLzl+9J/aZLMQ92zdCpbJF5ON8//kbo6YuE/sSXbC7T1wkrMDDXTuI+ncfvcCCFTvQsnF1vP3wBXv+PYt7j16KXxoG9WqF6hWKi3rb9p3E0vV7hdWY3M4U00qlbbNaKF+yINzGLUDJovnFLyDb9p3CnQfPkMLOFulSpwRZXT0GdkK2zOmjsKA+j52+BpduzYSFkyzck73X4cbhZbC0tBB1qe2yDftw/c4T+PkHIGe2jKhYpgg6Nq8dq3s9trNTq7WbCPu4sG9RlDhUcofPW74dV28/EmzJat6vS9MobGlO9DPis2KH3HpPZ4V+1iwsLDDl/7/wUKztwDE+KFY4r/AMSEWd/QsKDpHzpH1YveUgLl67L9ZL6+7azjHWOGb+d50JMAEmwASMg4BRC0myZlVvOVB84R3a4AWKHaQvoNL1e4svwHXzR0WhKLnHZ493AX3xqSrb9p7EuJkrhWDyHNZDVCMrEVmLls8ehgqlCsmbkhWxSM1uyJU9E/atnRbrrpG7ndzuZBFNnzZqTKeqhnEJSWoniYJr/y6VW0pVCUmPacuw6+AZITpJfCorkpCUPiPLWKb0qYW4ojJlZC80rV8Z4eHhqNFqsOB/fs+CKK59ieEI1w5wblVPJRfJeuw9sT/qVCsd56mnJKeWPccKqy6JRPsUtjhx7ob4M1lspbhWEiu127hFsSpLnRMbEmNbl0wQf0Xu8z7D/7PMkVihpCspHvfA+unCIrpm279CSNJ6ab9tk/2xYvfq2BiVyhQRcaXUNjQsTB77SuwG9WwFisXt26UpKE5XKhK/4OAQnN7pI/aOBPuuQ2fkruDnr96jceeRogn9YkPC9Mbdp0IEThvVGxRTG9+zQ2eW5mqX3DaKRfLyzQfoOvDPGaaQC1sba/FLGpWFUwehesUS4r/PXLqNv4fNEv9NIj55smS4eP2e2ANar2QFp8S40g16o07V0vD27C/qq7t/0c8gWd1z58iMOw+ei37iWnucB4krMAEmwASYgF4IGLWQPH/1LnoO8RJxdZIooC9YElY1KpXAgimDokAiayRZJUcPckb7ZlHdyvIv94gIdBs0TXyhL5w2WG6NoiSbzbuPY8uS8SjskCtKv2QBJTFA7mJVhURDsdo9onzRqrOD6ghJirmkhKGNi8agWME/CRrKhKTk3qcv/LO758statHnIX2JkyjwdO8uWFIh93OHfp5CsO9fN11YhMitT+79MYM7o13TWvKuJNEcXWBGH6u3+yxh1dq7ZqoQCnEVKU5VMWzh3cevaNbtzy8NR7fOERY2TYQkWVwpREFiKFl7FWNKVcVIKgofEk6dW9cXsYG//QKQNnVKsR/E89iW2XJL4/Gz1+E6yltY6/r3aKF06VKYBf1CI1mCSQgePXNNWDqjx8YqdqLs7FBbysifPn8DOreqJ7fK0vl06joKL15/wJ7VU5AnZxbR1au3H+HYcbiwRu9eNQUhoWFo0mWksMoqWvbpJoNGnUcgIDA4ViGp7v5JPElAjh3cBQ1rVxDW6kvX76Pb4OlqeQDiOkv8ORNgAkyACeiegNEKyY9fvqNVr3HC8kOJNmWK/yVoPHr2Bs27j1aacUwuXXLtUqxddFeshFKKUSPrz+IZQ+WuVsklTF+m9KWqWBo5jxBfwLeOrVDpbqP51mo1OEYGK2WCkxCLXmiOZKFSR0hS8gcJHMlSKAlJ+v8JQ7shMCgEb99/xtp//hVWI8pc799duXChNrHFSJLljix4FFtH1jcSpzVbDZILDUXB2bpJDYwf0jXWU1q/g7sQJdFdrMoaSWJcEjWKdSSBJ4l/TYRk9OQTKWlLMRQhLiFJbnCaQ/QiJdGQZY6EJhWJ5b+bZiJrpnRKOUnj0XklF7Pk7lbnR18x2aZi6UIIDArGw6evxVkli/2s8f1E9j8VsvS17TMBtGcUv6tYOg+YIn6JIIs39dmm93illl76OfjlF6BSSMZn/1SdQcmaShb9uDwA6jDiOkyACTABJqBbAkYpJL/9+A3n/pPFF2L0pBWyTtVtOySKO01CtOfwOYyYvETEJ5I4iF427jyKSXPXCrflWp9RSJMqhbwKubrJXUtJLQXz54zSVHIt3z2xSuVukMWmeJ0eIjFG0XL52z8QFRr1jdFOElbqCEnJXa0Y9xj9+h9pALLGtnGqGWt8WWxCUorzVLR+Ro+7JDfuP/tOKWUVfaHd3aaL2Dd1spQpfrFeu6FwqlcJUz16R+lKirWUzoM2hKTUR6vG1YUgpxKXkFR1ZZIkSulapyVeQ4R4JhFNMag+kweoPDePn79Bs26jxed0doQLvVRBNG9QNc67GaWzE71zsowe3jgzSvv9xy6CYkdjK4c3z8KNu09EPeJBXBRLXEIyPvsX2xkkbnSPLCcK6fYff+6dCTABJqANAkYnJOlKkR5DZvy5yufvNujRvmGUdZLVpUyDv8WXLV3fo1gkoThzbN8Yd+hJSQ7ktl3jPTJGEoPP8u3wXbsba308xPVDioVEW+pUKUScZmzFqauHmPepHfOQViEjlzLCpULJCZRdHR8hKfV79dAS2Fj/ufiZ5kRlwdRB4kLozBnSIkO61CqTWRTnrY6QpHsBKUGGihRiQPGJlFhDmfSUjEKuz7gKJZYQewpDkFzoqtpI9yK2bFQtxnUyFCfp4jEX7n3boWvbBhq5tqNbJCVrqzaEJK2JMuZpbw9umIGdB86I87Rslru4DzS2QoJ20ZpdOHDsovyOTRKDdE5jCweI/ksI/TLTe9hMIdwVbySgsaWYVtpDio9UVupVL4N/T17BqGnL5JzjIyTjs38sJOP6yeHPmQATYAKJg4BRCUkK1O851EtYc2KLc5RE1Pm9C6NY3iRLWfREE8nKRC5TEp+U0Ru9UHwkxUlGt4BKVhZlwjV6H9L4nVrWxcj+HZWegF5DvXDuyl21hSRl/Y7zWikSZ9TJ2lbn2MX2JT5o7HxxRdGZXT5InfKPxZaSnhw7DRP74tK1mUhMUoxhjG1MKRs++l2g0dtQBnB4eIRI3iChs2ruiChVpESqORNcUK96WUihBMqsl6qSbeIjJKNn/qtzZdLew+cxfPJidGnTQNxrSr98HFg3Qy1xLy325ZuPWLFpvxB+lORDWeWqijJrNt0IQC5s2ivFRCgp9jB6QlD0vkmEkhVZMYFGqhOXRVJKvlFn/1hIqvOTynWYABNgAsZPwGiEJMVw0RcYxfgpsygqoiT3NFkfFZNl6AtUeiHmxLY54q5Citmi13LoLkn6cpvn2V/lpeJSEg9Z2sgqKd11SFm8c5duE/dNxnW5syRuaK7j3LqIeLToTyKqKyTpS5lc9eNnrRIuz82Lx0e5wFpV1rY6R07Vl3j0xAvFvuh6lhkLN4m/ovlIWchxjUfJGxTTSmEKlNHcu1PjKPdI0n57L9smspUprrN173Eie3znyknInzub6J4sbS16jhHW3kMbvcQVOyQ8S9TtKRKDFMUa3Ufa0XVSlAQtKWtbHSGpKvNfHSFJNwrQXaTSK0qqQiwUmZGltVjBPFHulKTrgCg+OC63uKqwCEWXN11ZRdnv9PNR2clV7N2ulZOjvCJEPyeU3EMCXbq7lerRdU30yxexptee6CzGlbWt7v6xkIzrJ4c/ZwJMgAkkDgJGIySlWDpK8KhS7r/7AiWM2bNkEBYaKiQ06AuLvuy6t2uIlCmSY+ehMyKhgMQKWV2o0LOLzv2niP+mZwklt7Di1lD2bb5cWcVfSdY4SqigN6jJQrp8434xzuFNs8SVMXEVKU6T6pEoJQFLiRbffv7GtVuP5ffyRXdtkyAiF2hA4J+XbWgtkiBRdi+mNoQkratlo+r4K292UEgBiWYaU1GgS+uluNWqzf5c8RKXVSs6I8qQp4QOKpSBX618cdja2uDh01fyuyKll20kNzrNjaxxtslssH3/KZFlH/1+zq6DpuHyjQci87544Xy4df+puCpIGif69T/qCElJiJJgovtEQ0JChYu/ROF8aj0rOXvxFnFmqMSV0U51KB6R4hfJil3IIZd4N37XobNi/1fOGY5yJf97eSk619jia0+ev4F+I+eKJrtWTRZnXBLJxNa5ZT1kyZQOL16/x7Gz14XQl2KAaf60Dir086j4DGlcQlLd/WMhGde/JPw5E2ACTCBxEDAaISlZ6lRhix6TR19YFG+o+IY2Cc0BPVrKXYmSKIhtKxRj2MgKOGr6MnHVjlQoMcdn0gD5dSnqbCtZ9mb5bsGR01ejVKcvcHp6sUm9SuKCa7JWkpWNYiAVC315Z8mYFtUqFBNvbUuZt4p1SEhGvydQnblRHWImXVdD1xopMvQa00dcxaKs0NVAlN1Lz0XG911sEiNk0VRkS2OQMGnhWBUdFC7fJusYXeOkOC+KlSWLpWJWM7Hr5zFH/uwk8aW4WhJBFFsovf9M72f3cp8prMSUiCQVKUYyejzhys0HsGnXMXm/lHhC71YTs7jeJ5fGit6nqr2hXzwoK196OpPq0ToG9mwl3vuOrUhnR1lMKbWjS87pzXc6TyQm6dokutmA7vZUFIc0Hs2XrkGSCrnpDxy/iE9fvgsRStb1kVOXCmG/Y7mnqCa5sulMz53oKm+rzv5JZ1AZT3Khh4WHxxmTrO5553pMgAkwASagOwJGIyQ1XSLFMFICTq5smaK8cqNpf9IX5Mu3H0XCjLJ4SnX7pqtMPn/9ia/ffwoxmNAn8dQdNz716HoiEr5mMjPkyp4xittZsR+K3WvYabjS2Ln4jEdMPn39gZ8//ZAqZQpkSKf84naKy3z34QsCgoLF5eLSk5XRxyK37Ku3nwCZDDmypFc5//jMkerSPN++/4LkyW3ksaLq9EGJKuQG3r7cU1h61S3kUv7w+bsQkXRWFF9sUreP+NSj8SgUI00qe3F7QfQQjOh9SS5vuuifLvyPq6i7f3H1w58zASbABJiAcRNI9ELSuPEmndlJ9ySqk4WcdFYdv5VIMbLKXl2KX0+GrU0xpSTOyaVP9zlS2MP8FdtFkti8SQNQu0opw06QR2cCTIAJMAGjIcBC0mi2wngn8vOXPyo5uYj7N/esnhqvLGTjXZX2ZyZdIaVuRrv2Z6CdHhUTqxR7pHji2N5V187o3AsTYAJMgAkkJgIsJBPTbhlornQJ/IWr90QGL8WqclFOgGIDSXQ3rlsRVpYWiRYTubGv330iQgsoEz1T+jQokD9nlFsDEu3ieOJMgAkwASagVQIsJLWKkztjAkyACTABJsAEmIDpEGAhaTp7zStlAkyACTABJsAEmIBWCbCQ1CpO7owJMAEmwASYABNgAqZDgIWk6ew1r5QJMAEmwASYABNgAlolwEJSqzi5MybABJgAE2ACTIAJmA4BFpKms9e8UibABJgAE2ACTIAJaJUAC0mt4uTOmAATYAJMgAkwASZgOgRYSJrOXvNKmQATYAJMgAkwASagVQIsJLWKkztjAkyACTABJsAEmIDpEGAhaTp7zStlAkyACTABJsAEmIBWCbCQ1CpO7owJMAEmwASYABNgAqZDgIWk6ew1r5QJMAEmwASYABNgAlolwEJSqzi5MybABJgAE2ACTIAJmA4BFpKms9e8UibABJgAE2ACTIAJaJUAC0mt4uTOmAATYAJMgAkwASZgOgRYSJrOXvNKmQATYAJMgAkwASagVQIsJLWKkztjAkyACTABJsAEmIDpEGAhaTp7zStlAkyACTABJsAEmIBWCbCQ1CpO7owJMAEmwASYABNgAqZDgIWk6ew1r5QJMAEmwASYABNgAlolwEJSqzi5MybABJgAE2ACTIAJmA4BFpKms9e8UibABJgAE2ACTIAJaJUAC0mt4uTOmAATYAJMgAkwASZgOgRYSJrOXvNKmQATYAJMgAkwASagVQIsJLWKkztjAkyACTABJsAEmIDpEGAhaTp7zStlAkyACTABJsAEmIBWCbCQ1CpO7owJMAEmwASYABNgAqZDgIWk6ew1r5QJMAEmwASYABNgAlolwEJSqzi5MybABJgAE2ACTIAJmA4BFpKms9e8UibABJgAE2ACTIAJaJUAC0mt4uTOmAATYAJMgAkwASZgOgRYSJrOXvNKmQATYAJMgAkwASagVQIsJLWKkztjAkyACTABJsAEmIDpEGAhaTp7zStlAkyACTABJsAEmIBWCbCQ1CpO7owJMAEmwASYABNgAqZDgIWk6ew1r5QJMAEmwASYABNgAlolwEJSqzi5MybABJgAE2ACTIAJmA4BFpKms9e8UibABJgAE2ACTIAJaJUAC0mt4uTOmAATYAJMgAkwASZgOgRYSJrOXvNKmQATYAJMgAkwASagVQIsJLWKkztjAkyACTABJsAEmIDpEGAhaTp7zStlAkyACTABJsAEmIBWCbCQ1CpO7owJMAEmwASYABNgAqZDgIWk6ew1r5QJMAEmwASYABNgAlolwEJSqzi5MybABJgAE2ACTIAJmA4BFpKms9e8UibABJgAE2ACTIAJaJUAC0mt4uTOmIDxEIj49A4RH98h4vMHRHz9hIjvXxH58xsif/9EpP9vhL9+HmOyQzMfV7qA1KlkSJsGyJpJhpQpZUiTCkibWoZ06YD0aWXGs2ieCRNgAkyACeiVAAtJveLmwZiA9glE/vyOsGcPEf7iMSJePUX4m+cIf/lUo4FUCcm4OkuTWoZ8uWXIlkWG7FllyJldBvsUcbXiz5kAE2ACTCCxE2Ahmdh3kOdvcgQi3r1C2L0bCHt4C2EP7yDiwxutMdBUSCqbQCp7GRzyy1AgnwwO+WTIlIEtl1rbKO6ICTABJmAkBFhIGslG8DSYgCoCkaEhCLt+HqE3LiHs9mXhrtZV0aaQjD7HdGlkKFxAhsIFZShayAyWFrpaBffLBJgAE2AC+iLAQlJfpHkcJhAPApGB/gi9eBKhl0+L/+mr6FJIRl8DWSgb1jVDqWJmsLHR1wp5HCbABJgAE9AmARaS2qTJfTGBBBIIvXQSIWePIvT8sQT2pFlzfQpJxRkWKyxDlQp/RCUXJsAEmAATSDwEWEgmnr3imSZRAhTzGHJiP4J2rQciIw26SkMJSWnRqVLKULGsDJXLm3FMpUFPAg/OBJgAE1CPAAtJ9ThxLSagdQKhNy4g5PAuvbqu41qEoYWk4vwonrJODXMULchJOnHtG3/OBJgAEzAUARaShiLP45osgZBThxB8YCvCnz4wOgbGJCQlOCnsgDbNzFGxLLu9je7AJMEJ+fkDx06Hx2tlTg3M41WfKzOBpESAhWRS2k1ei1ETCDm2F0GblyHi+xejnacxCkkJll1yoJWTuYil5MIEdEWAhOQgj1C1u6dzOXeKpdr1E3vFoOAQmJuZwVLDaxdCQ8Pw9fsvZMqQxiAowsLCERYeDhtrK/n49x69xKNnr1Gm+F9Im9oeVpYWMDfnXw7U3SAWkuqS4npMQEMCIWcOI3jXOo0vCddwWI2aGbOQlBaUOaMMjeuboXxpFpQabTI3ipWAvoVkrdZu+Pj5W4w53T2xSuOdGjF5CXp0aIj8ubPF2kd4RARqtByEb99/4djW2ciYPm5x18l1MooVyoth/drFe37Hz17H8MmLkTNbRvzyC8Dk4T2FeIutKPJJk9oedauWxtC+bWGbTLOrHuav3IGjZ65hx3JPMezIKUtw5vIdlC7qAMda5eE2fgHmTx6ImpVLxnt9ptqAhaSp7jyvW+cEwm5fQdA/q8Tl4YmlJAYhKbGkS86b1DdHQQeOoUws5ysxzNMQQrJD89qoXbW0HI+ZTCbElqalcI2uWDV3BMqWKBBrF5dvPEDXQdNAAq1n+4bo0qZBnEM+f/0ByaytNLIokih0blUX3do6YvqCjXjy/A2WznSPU0h2blUPdaqWxqu3HzF6xgpULlsYnsN6xDlXZRU+ffmB334ByJsrCwICg1DWsQ92rJgEhzzZEBERiftPXiJHlgxIYWerUf+m2IiFpCnuOq9ZpwTobeugLcsQcvKgTsfRReeJSUhK6y9Twgytm5ohbRoWlLo4E6bWpyGE5KBereBUr1IM1FduPsTEOavx4dMfi2WNSiUweqAz7FMkB7mYZ/luwcETlxAcHILihfLCY6Azdhw4jeUb9iFblvRIZW+H5o5V0a5pLaXbOG7mSoSEhCJntkw4dPKy3EpHlTfuOIp12w/j89cfQtSzgeZ7AAAgAElEQVS6dmuO6hVLYMbCTciXKytaNKyKH7/80G/EHDx58Vb0X8ghFzz6d4RD3uxKx3Pq6oHKZYpguGsHYQkMCAyGt2f/OIWkIp81Ww9h1ZZDwoJKltezV+4IiyoJQ5pjveplRX9BQSFYuHqnWBeNU7b4XxjZvyNIPF+99QhjBndG5wFTxH8XcsgJMzMzbFw4VvzdqIGdUDB/TpV9pE+bytR+LGJdLwtJPg5MQIsEgvdsRODaBVrsUb9dJUYhKRFq3dQc9Wuxu1u/JybpjWYIIVkgb3YUdMgph0kxiP26NsPdRy/w5PlbFMiXA4GBwRg7cwVqVCoJt96thVhctfWQcMNaWJiD3MblSxVE6pQp0LTrKAx3aS+EHcUiZsucPsZGkdCq1mIAZo3rh2xZMqCx8wi5Ze7GnSfo6DoJcya4IHeOzKA/U2xh++a14eIxF8UK5sXfzk3w67c/dh48g5JF8sPKyhLLN+7D81fvsXXJBKUH49L1++g2eLoQffZ2yeE1pg+u330CaytL1K5SSmkbsmIqCslJc9fi9oNn2Ow7Duu3H0H+3FmFRfXk+ZuYvXgLzu6eLwT0WK8VuHj9Pvp2biqE8La9J4WgpvFOnLuOFbOHY/+xi3CfuAgLpw1G8mQ2ws1O1tw18zxQupiDyj6KFsyT9A5+AlbEQjIB8LgpE5AIhD26i6B1CxD24FaihpKYhSSBt08BuPS0QN5cbJ1M1AfRgJM3hJDMkjEtcufIJF81WccmDO0m/kyu2Ot3HuPjl+84cuqKcLkumDIIFOu35/A5+HgOQP482SCT/Xfm1XFtHzl1FR7TluLsrvkicaZ173GoUq4YBvZsifNX76LnEC/4TndDxdKFhVCViqKQlCx/N+89xfPX73H7/jMhLFXFd0ru7C/ffyFjutSYO9EV42euQob0qYU4VlZISJYp7oC/8ubAvUcvcPD4JfhMHoBalUshPDwcD56+xoPHr4Tl1GfFdmxZPA55cmZBmQZ/Y9LwHsIiq1jWbPtXLiRJ9DbuPBIX9y2CXfJkopokJMlKqaoPAx5PoxyahaRRbgtPKjERCNq6AvS/pFASu5CU9sDJ0RxODdg6mRTOpL7XYAghqcq1LVnMKNaxYL4cuP/klcg2JoFH7u4xM5bj3JW7SG5rI6xtfbs0RTIbayGG4oqRHDjGB9fuPBbJK1TIekcJMCf+mYuI8Ajhwt6w44j4rH6NsnDr3Ua4yxWFJLm0ycJob2eL8iULIigkFLtUCMmHT1+jRY8xOLVjHszMZOjuNgPp06QScYotGlYTrnJVQjJt6hTCMpo9cwbUqVZauJ39A4Lw97BZItuarJlZMqaD79rd2LhoDFLYJRcW1r1rpyF39v8EOvWvrpAkK6eqPvR9Jo19PBaSxr5DPD+jJRD+6ikCl81K9FZIRcBJRUjSmvLnkaFTa3NkzcLWSaP9ITLCiRmTkKSYQsea5YVApLJi0wGQe5iEpFQo4/vSjQfwnLMGI1w7CkFGQpJct+TqVlYotrGykys6NK+DNKlSiCqUwb1o9S6s8h6BssX/JOmQ6/rW/WfwXrZNxEVO9egdRUhOn78BD5+9Fgkz5I4ny2SHfp5KLZKHTlwWGdGS65nmQCL00dPXOLx5Fsgqq0pIKhPaR05fBYnhC3sXyhNjaN0kJHNly4SKTVzgPbG/EJ6KRV0hSS5zVX0Y4bE16JRYSBoUPw+eWAmEHNmNgGUzgYiIxLoEpfNOSkKSFmhmBiEmq1Vi62SSOqg6XIwhhGS7pjVFVrJUyE1NFji6aidf7qzC7fv63SdMnLNGxECSkFy77V8UyJ8DJQvnF9a55j3GiLhIsh52d5suxGD39g0RGBQsYgYVy7Z9J+G97B9hfSQBKBXK4M6TIzOqVyohRCTNidzso6ctQ0p7O4we5BxFSC5ctROHT1/F4ulDEBIaKoSoKtf20xfvQMKYMsP7ODcR8xoyYZGwKFKikM+kgbCx+e9uR2lO0WMkpb+/eO2+WOe2pRNEHOiBYxcx2XudEJIUw0nsqFDiTO7smbH3yHmUKJJPWHClGMnYXNsUI6mqDxLVXP4jwEKSTwMTiCeBgCVeCDmyK56tEkf1pCYkJerVK5nBuS1fMJw4TqFhZ2kIIanqHslzl+9g+JQlIiuZ3NcOebILNzIlh5B1cpbvZgGLPqtbrQwmuncTF2nTPYnjZ60S7ciaSdnMioUyk0sUyR8jLpEE5owFGzF7vIuwHpJApVK5bFGMH9pVWA37j5qHogVzo3enJsK93n+0N+hCbypVyxfD6Yu3VMZIbt9/WiTkvHj9QdQf59YF9WuUQ8+hM4RVcdE0N5F4o1hUCUm6qofmePjUFVGdYiaPnb2GTYvGgpJhSHiPnLJUxJdSIbf8spnuOHHuBo7/P9mGrjIi9/Wl/b6CIRWyaq718UCpog4q+8ieJYNhD6mRjc5C0sg2hKdjvAQi3r5EwKKpCHt0x3gnmcCZJVUhSVgyZZTBtac5MmVgV3cCj0mSbq5vIRkXTEooef/xm7C6KSa9UDv6jBJX0qW2j/ESC7mqf/z0E65rxUScuMaTPo+MjMS3H79hm8xaxF3GVt59/IrUKe3irCf1QcI5XdpUUayh6s4rej16JYdiLslSq6z4+QciJDRM7sLXZBxt9KHJuImlDQvJxLJTPE+DEgi9ehb+04cbdA76GDwpC0mJ34DeFihWmMWkPs5TYhyD39pOjLvGczYkARaShqTPYycKAsEH/0HgijmJYq4JnaQpCEli1LGVOWpW5bjJhJ4Xbs8EmAATYCHJZ4AJxEIgaOMSBO1YYzKMTEVI0oY2qmeG5o04btJkDjcvlAkwAZ0QYCGpE6zcaVIgELBkBig725SKKQlJ2teqFc3QpR2LSVM647xWJsAEtEuAhaR2eXJvSYRAwNxxCDl3NImsRv1lmJqQJDLlSpuhd2cWk+qfEq7JBJgAE/iPAAtJPg1MIBoBf6+RCL182iS5mKKQpI0uXsQM/XuxmDTJQ8+LZgJMIEEEWEgmCB83TmoEKDObMrRNtZiqkKT9LpBfhqGuFqa69bxuJsAEmIBGBFhIaoSNGyVFAqZsiZT205SFJDHInVOGUW4sJpPiz7e6a4r8/RN0U0N8ik3r7vGpznWZQJIiwEIySW0nL0ZTAgHe4xFy9oimzZNMO1MXkrSR5UqZoXcXdnMnmUMdz4WQkPzZo5HarWQpUiLl8n1q1zdURXrrulzJAiov7jbUvFSNS08oWllaxLho3djmyfMBWEjyKTB5Akn5ycP4bi4LyT/E+EnF+J6cpFNf30KSngCkl16WzXJHxdKFBciTF25iwqzVOLZ1tkZgl2/cj2yZ04t3t6VCT/+tnz9avDetbpGeEKTnBQ9t8FK3WYLrBQWFoHSD3pg/eSBqVi6Z4P64A90SYCGpW77cu5ETMLV7IuPaDhaS/xHieybjOi1J83NDCMnQsDDxjjW9E03PGSZUSA4c44MC+XKId7YTIiQXrd6FnYfO4M27z9jsOw5FCuTWy6bTO9r3n7xEjiwZxBvcXIybAAtJ494fnp0OCQQf3I7AFZr9xq/DaRm0axaSUfF3aGWOWvwCjkHPpL4HN4SQ7Ne1KcZ5rYTP5AGoVblUDCH57OU7TPJei4vX7iNvrizo370F6lYrI9BMn78BObJmxM/f/jh35Q4KOeTC9v2nYG1tJcSpQ55s8BzWA2SR7Nmhkajz8s1HtHWqCZeuzWFjY6UUMb213aDjMPRxdsKuQ2dRMH9ODHdpL6/boZ8nqlUojkMnL+Pt+89oWr8KnOpVwqzFW3Dv0Qs0qVsJ/Xu0QCp7O9Hmys2H8Fq0Cc9fvUedamXQoVltIUyfvHiLUdOWYaRrR6zZdgifvvzAuvmj0Ml1MkYN7CTGJQvlwtU7xVgBgcEoW/wvjOzfUaxj4pzV+PDpmxijRqUSGD3QGfYpkuv72Jj0eCwkTXr7TXfxpvJ2dnx3mIVkTGL9e1ugOL/NHd+jlGjrG0JIjhvSBXcePMehE5ewY8UknLl0W+7aDgoOQcNOI1C0QG50bl0fF6/dw4JVO7Ft6QQhsvqNmCOEZ4Oa5VC8cD5ky5QOKzYdQM5sGdHcsSqS29qIeiQkSYT27dwUtsms4e7pC6+xfVG9QnGle3Xz3lOQWDy3ewGOnL6K6Qs24PyeBfKYRerPIW929O3shMhIwG38AjHW0D5tkT1rBoyathyu3ZqjRcOqeP3uExp0GIYhfdqiWoVioHjNf/adwtEts8S62/WdiIzp06BVo2qwsbFG93aOYr5r5nmgdDEHjPVagYvX74u507q27T2Jdk1rwczcDE+evxXW18DAYIyduQI1KpWEW+/Wifb8JcaJs5BMjLvGc04QgYh3r/BrUIcE9ZFUG7OQjLmztskADzcLZMogS6rbzutSIGAoIVmycD7UaTsE44d0RfLkyeRC8tzlO+jlPlPES5LYouLU1QNVyhXDsH7thJAkQTeoVyv5KtRxbY+YvARp09jDvW87pfs/1We9sPR5e/bHj19+qOzkiqVeQ1GpbBFRP3rMZds+E9CoTkV0blVPfE7Wx2/ff2GqR28sXLUT+45ewMyxfcVnIaFhQqSSGA4LCxdC8tJ+XyFEpSIJyUIOOVGmwd+YNLyHEMbRC1kwr995jI9fvuPIqSvCFb5gyiA+03okwEJSj7B5KOMg4De6D8Ie3TGOyRjZLFhIKt+QnNlkGOPO1wIZ2XHVyXQMJSTJMrh8wz5s2XsC7n3aYYrPeiEeyXI3d9k2nN4xT77ecTNX4rdfAGaPdxFCslQxB+G2loo6QnKy9zqEh4djrFuXGBxDQ8NQuakrcufIjMIOucTne4+cR+0qpYQwVCYku7tNR42KJYTVlAqJx0fP3mDuRFeMnLIEZy7fQc6sGaOM5dKtGexskwkheef4ShEfGl1Ipkltj8bOI7B37TTkzp4pSvv9xy7CfeIilC1RAAXz5cD9J69gY20F3+luOjkb3KlyAiwk+WSYFAHO0I59u1lIqubDmdym8U+FIYVkQGAQarQchOKF8uLpy/dCSJ44dwMuHnOFizml/Z/YP7LmFf4rt4ghVCUk/8qbHf26NosizBSztmMTkuQqp37JNS2VN+8/Y+fBM7h8wBe2yWxiWCR7DfVC1fLFlArJ2Yu34OnLd0othbfvP4tVSObPnRUVm7jAe2J/1KlWOsohJMusY83y8qQiculfun6fhaSef1RZSOoZOA9nOAIhR3YjYMkMw00gEYzMQjL2Terc1hzVKpklgp3kKWpKwJBCkua8ccdRkVhDbmwSkuRWrtduqIgJJKvjpRsPQBbHhdMGi/hGZUJyybo9uHzjAXwmDYR/YBDSpraPIfxiE5LDJvnC3MxMbn2keZHILevYR8RVNqxVPl5CklzPlDxD1kzHmuVEYtDhk1dQtmQBEdsYm0WSYiSpLRUSzrmzZxbWUbrGaPzMVciXO6uIiaQ4zIlz1oh7Mtkiqenp16wdC0nNuHGrREYg/NVT/B7WDYiISGQz1+90WUjGzXvCCAtkzczxknGTSpw1DC0kg0NCRaykpYWF/B5JshCSC9c/IEhA7dPZSWRuUyEhSWKrh4Jrm+5/pOSXR09fo2SR/CILOnpMIwnJiIgIjBncOcpGSYJREqqKH5LA9PMLFCI2en/RLZJ0ddDj52+E+53K9v2nMW3+evkacmXPhEXTBuPX7wBQfKUy1/ZaHw+UKuogROLIKUtFLCQVutdy2Ux3vH77CcOnLBGxmBRf6ZAnO+ztbMX8uOiPAAtJ/bHmkQxIwG+8K8Lu3TDgDBLH0Cwk496nzBll8PTgeMm4SSXOGvoWkupSCo+IEMkvaVPZq7yyJ3pfJLDoKhwLC+N4qYmuFPr6/Zd4sUaTK3r8/ANFok6aVCnkS6U4z/cfvyFThjRGs0519zSp1GMhmVR2ktehkkDQ1hWg/3GJmwALybgZUY2mjuZo0oBd3OrRSly1+K3txLVfPFvDE2Ahafg94BnokEDYo7vwG/23DkdIWl2zkFR/Pz0GWyBPLnZxq0+MazIBJpAUCbCQTIq7ymuSE/Ab2w9hD24xETUJsJBUExSA/HlkGD6QXdzqE+OaTIAJJEUCLCST4q7ymgSB4D0bEbh2AdOIBwEWkvGABaB1U3PUr8Uu7vhR49pMgAkkJQIsJJPSbvJa5AQivnzAL5c2QCRnacfnWLCQjA8tgO5PnjbOAmlTs4s7fuS4NhNgAkmFAAvJpLKTvI4oBAIWTELIyYNMJZ4EWEjGExiASuXM0L2jcWTFxn/23IIJMAEmkDACLCQTxo9bGyGBsNtX4OfJb61qsjUsJDWhBgxxsUBBB7ZKakaPWzEBJpCYCbCQTMy7x3NXSsBvTB+EPeS3tDU5HiwkNaEGpLAD5ky21KwxtzIqAl/CgrDgU/z+/RiXpYxRrYEnwwT0SYCFpD5p81g6JxBy5jAC5k3Q+ThJdQAWkprvbK/O5ihfmhNvNCdoHC1JSKa/uVLtyaSzsMHn4t3Urp+UKkZEROLz1+9ImzplvC8DDwoKwS+/AKRNnQLm5sYRGnL11iPxnnm+XFm1uk1BwSHiyUlLy6R5ywMLSa0eF+7M0AR+D+0Ceg6Ri2YEWEhqxo1apU4lg9eEpPlFoTmVxNdS30KyVms3fPz8LQaouydWGTU8eoaxz/BZsLayxPeffujj7ISOLerEOecL1+5hyrx1ePrinbyuU71KcO/bDmlS28fZXlUFekby9v1ncO3WXOM+XDzmoljBvPjbuYnKPmjdjZ1HiGcaD23wUmsseiu8WKG8GNavnVr1E1slFpKJbcd4vioJhBzbiwDfaUwoAQRYSCYAHoCu7c1RpQJbJRNG0bCtDSEkOzSvjdpVS8sXbiaTIWe2jIYFEcfoY71W4NOXH/Cd7oZjZ6+h/6h5uHpwSazPN167/QjO/aegX9dmaN+sNmysLXH30QvMXLQZYwd3RuG/cmu85g07juDg8UtYM89D4z7UEZL0hvjOQ2fw5t1nbPYdhyIF4p4zic9k1lbiGcekWFhIJsVdNdE1/XZzRvib5zpbfSSA7xEyWMgAexn9SXkJBfAlXIZ0ZpGwVCP/QlX935Ey2MkioUYXWlszC8mEoeR3uBPGzxhaG0JIDurVCmSVi1627T2JV28/wu3vNuIjemt74FgfLJ81DHbJk6FDP0/07tQEpy7cxIMnrzBpeA+kS5MS0xdsxOFTV2CX3BatG1dH706Nhft4z+FzOHHuBpLb2gjRlTpVCowe6Iyq5YuJ/t99/Iqp89bj4vV7KF4oL1o3qYF61csq3RYag4QhCbf9Ry9gqs96nN+zIFY3Nc03c8a0mDWuX5Q+6R3xiPAI4fq9cvMhvBZtwvNX71GnWhl0aFZbiLUnL95i5JQlaFynIjbsPCra92jXEG2cauLlm4/o1H8y6G1xSdit9h4J76XbkCNrRvz87Y9zV+6gXbPaOHX+Js5euSPq5s2VRVgwpTXGJSTprfAGHYcJ6+uuQ2dRMH9ODHdpL1/Lxh1HsW77YXz++kP8IkB9V69YAjMWbhLu8hYNq4r1TZyzWuwllRqVSog90OTtcWP4eaE5sJA0lp3geSSIQMipgwiYPylBfcTW+HKoOWb5WSH8/5Wymkfib9sQFLT4757KV+FmmOlvhffhf6Rf+2ShaGETprLb2OpP8bPCnTBzWCISfWxDUdHqz8jnQ8yxPMASS1MF6URgspBM+BHq0ckcFcuyVTLhJA3TgyGEZIG82VHQIad8wRRPR1Y7sn6RQPT27C8+I1Hp2HG4EGwkPArX6Cr+vnOrekKgkSCa5bsZD5+9xpC/2+Dr99+YNn89BvZsJdzOqzYfFCKtb5emQihu2nUMt+4/w+kd8xAWFo6m3UaheOF8cG5ZFy9ef8DQiYvw76aZyJopXYzNICHUwWUSktlYISw8HJ7u3ZHMxhpXbj1Et7aOMeqHh4ejWO0e8J7YH3Wq/Wd9Vaz4+t0nNOgwDEP6tEW1CsVw6MRl/LPvFI5umYU7D56jXd+JqFW5FNo41RAWwUneawULEqCzF28VAnjs4C6iy5JF86O/hzfI5d2gZjmxrqIFcuPeo5fInzurcKOfPH8Tsxdvwdnd85HK3g5xCcmb954K8X5u9wIcOX0V0xdskIvnG3eeoKPrJMyZ4ILcOTKD/kxM2zevHaVfssA+ef4WBfLlQGBgMMbOXIEalUrCrXdrwxx4LYzKQlILELkLwxP47dEL4U/u62wiV0LN8SVChkpW4QiOBGb7WyEiEphuHyzG/BwhQ7+fNihiEYFmNqH4yyICQZEypDJTbrmMrf6LcDOM+GWNdakDcTjYAseDzTHDPhjUU9+fNkKgVv+/sNT2gllIJpxo7pwyjHLjWMmEkzRMD4YQklkypkXuHJnkCzYzM8OEod3UEpKLZwxBlXJFRduAwCCUdewDr7F90bBWefF3ZDmkuMQdyz2FkDx7+TaWznT/8+/W1x+o0XIQ9q+bLixk3d2mY5X3CNjZJhOfj5+1Ck3rV0aH5jFjH0nkzV6yBQXz5RRidK2PBy5cvYdNu45i65KYCY/kBq/ZahA2LBwjRKyysnDVTuw7egEzx/YVH4eEhgnhtm3pBCHKSEjeOb4SMnoJAEDV5gOEgCWrnjLXdr8Rc+CQNzvI4isVErQPnr7Gg8evxPp9VmzHlsXjhFs9LiFJVlfiRML+xy8/VHZyxVKvoahUtgjOX72LnkO8hKu/YunCUZKPovdLLK7feYyPX77jyKkrSGFniwVTEu+VdSwkDfNvFY+qRQKh18/Df+qffxj1VQ4GWwjL4KbUgaB8Qx9/K5wPNcfaVH/+HFeJrT71vS/IAj4pg3AnzAyTfluLcU6GmGNjoCUWpdSNNZLmzEIyrp1T7/OBfSxQtKA+gxLUmxfXipuAIYSkKte2OhbJ9fNHo0SRfGJhUiIICUMpxnLv4fPClXppv28MIUltyjXsA89hPeAfEIQxM5ajZJH8USDVqlIK3dtFtTCSGKvYxAVTRvRCzcolMNZrJc5fvYcq5YogNDQMUz16xwAtWSRnj3dB/RrK3eXkuj5z+Q5yZo0aH+rSrZkQt9GFZCPnEXDp1lyIZlVCslQxB/Ts0EjMh9b497BZePTsNWpXKYUsGdPBd+1ubFw0RiTZxCYkaV2Vm7oKa2Nhh1yiv71Hzot+aL30ObmwaR5UaI1uvduIpBzFfvcfuwj3iYtQtkQBFMyXA/efvIKNtZUQoIm1sJBMrDvH85YT8PcaidDLp/VKZJKfNd6Ey+CbMkiM2/OHjYiHTGMWiW8RMuQyj0BX21BkVGGRjK3+03AzjPpljfX/t0geCzbHNPtg9P5hgx7/d3PT2JnNI9USrfEBw0IyPrRU16XLyemSci6Jj4AxCcnFa/cIy5UkMpS5thWF5M9f/qjk5IKFUweJ2DwqZHGjeMh9a6fFEJJvP3xBvXZDQfGE/oFBQuCQ29bCIvZfhyXrIlnRyBpIMY5jZ6zAzoNnMG1UbzSpGzPek+bSts8EZEibGj6TB0Q5GCQyw8IjsGDlDjx9+U6pdY4ysmMTkhSfSNbMdfNHyfsmi6SikCR39MAxPriwd6GwAlKh8AB1hCS5yKk/xazwN+8/izVfPuAL22Q2or9fv/2FhdZ72TYRF0kiU1FIOnX1gGPN8iK8gMqKTQdw6fp9FpKJ758KnnFSIRDx7hV+Deqg1+VI1shhdiEoa/kndrH192TIbh6B+tbhIq5xa5ClcIEvThUEZddUx1af5Mfo39agGErqva9tCIIjZdgVZIEp9sEY9sta9B0KGdyTB6OYpfbeE2chqb2jNGmUBTJlYKuk9ojqpydDCMl2TWuijkLWNrluyfJ1+cYDIULIVUxxk0s37AUl4CjGSCoKSSJEV82QqBk3pAt+/PwNtwkLUb9GORGDR67tXf+ehe+0wQgOCcX8lTuEJfHwxpkICQ1FnbZD0LR+FQzo2VLEYNP4FP9Yt1rUC9fp/sgKjfuKxBZywadOmQLzlv8jRJW1tRU2LBiN7FkyxNgwEkzdBk9H17YN0Ll1fZHJfO/xSxHXOX5IV+HKpvmT+HKsWU4kyRw+eQVlSxYQ8YSxCUlK/OkzfLYQzMQqVcoUcPWYG0VIXrx2X7jvyVVOGdQHjl3EZO91agnJYZN8Rb+K1lbFUAJKYCIRSftIoQmjpy1DSns7jB7kHEVI0vry5c4q9oNiQifOWSP4sUVSPz/fPAoTiEEgcL0vgnet0xsZSnah+MhOyULRVCGRhoSha/IQeewiicAhv6wxNUUw8ikk5EgTVac+xWSmNIsEpW10/2GDAclDERgJbA60FG7vVQGW+B4pw+DkIVpbPwtJraGEYx0ztGyiTqCD9sbknhJOwBBCUtU9khQXSFnalGlNhZJGyLoYm5CkDOb+o73l9zRScsoUj15IkTyZPNlGokRu15lj+qJowTziryhBhJI/pDseSRyRcCL3bfRCllKydpI4o9LWqSaGubQXd0QeP3cDGxeOQbbM6WO0O3n+Bqb4rBfJMlIh1/TIAZ2QJlUKbN9/WiQIkRuaSq7smbBo2mD8+h0gLJqKMZLk2iYLoWOt8iCrpouHN05fvCXa0VVEbuMXoHQxB/T4v2ubBDD9HWW0UyE2dHXRpkVjBQO6wqhowdwiE16xSIJx4bTBqF6heJTPSGD6+QWic5v6GDB6nnzelcsWxfihXUHxr4r9nrt8B8OnLBFZ48TXIU922NvZgvpOrIVd24l153jegsCPNlX0RuJIsAUWB1iiu20oHK2jZmP3+WmDalbh6JCMLvMBnoWbYfgva0xIEYxCSoRkfOrvC7bA0WBzzLYPxooAS3yIkMHDLgT/BltgR5CFiJnUVmEhqS2Sf/pZ5s3PJmqXqO5707eQVGdFJDrIymhjY6VOdVGH3M90T6PitTJSss3CqYPx2z9QCDdlhSxroWHh4nMpsUXVwJrMjfoioUjj0GzILVEAACAASURBVHVF0V98oWt2vn7/BStLi3hfi0N9WllaxsqK+jYzkwlLoDYLzfvbj9+wTWYtMthVFRK97z9+E1bRuMIItDk/XfXFQlJXZLlfnRMIvXgS/rP+i4fR5YAk5sgC2MomDFWs/hORqcyA5LJIbAi0xN5gC3ilCIKdGeDrb4mbYeZYkTIQNjJg7G9rZDCLFFZLKnHVl9YSGgl0/5kMw+yCUdQiAudCzLE20BILUwaJZJ+ASBkGsEVSl1ufoL77dTdHqeJ8FVCCIOq5cVJ+azt61rae0fJwSZQAC8kkurGmsCz/OWMRev6YXpY6y98KF0Jiuim7JAtFY5swkOCb4mctsqypkHgcYReMwv+3Rvb+aYNMZpGYmOLPdUFx1ZcWRXGRJB6la4b8I2WY8NsKbyLMYItIDLULQQElFk9NoRjCIpksGZAtswy//YEPH2Nel5QujQy2tsCrNzE/o1tA0qaW4cs31RfEa8pCG+2KFZJhwN+cdKMNltxHwgk8evYGn758l18XlPAeuQcmwBeS8xlIpAQiA/3xs0t9o5s9vUYTEAlhfVQnzSK+9aUF/4hQfUdlQqDoW0hOHm2BjOn/IxUYBHh6heHTl0hkzSzDGHcLSAmkYWHAmQsRWLf1T4JT7epmaN3UHOZmwI9fkRg5MQxUh8Tl/BmWOHYqAv/ska6QTwiVhLX1mW6J/yd0Jqwjbs0EmAATMEICbJE0wk3hKcVNIOTEfgQsnBJ3Ra4RLwL6FpJu/Sxw9mIErt+OQJ6cf67Muf8oErMXhiF7VpkQitv3huPnL6Cnszkc8soweFQo/PyB6eMs8OxlJJavC8dCL0us3hQu+nJyNIdjbTO4DAtFhPYS2uPFUbFyt47mqFyO3dsaA+SGTIAJGDUBFpJGvT08OVUEDHF3pCnshr6FpCJTa2tg/nRLXLwagWVrY1oS8+eRYfhAC2GRPHEmAkvmWAqL46FjEZg7xRJ3H0QIUblghiUOHI3A7gOGt0bS+koWNYNLT87eNoWfH14jEzBFAiwkTXHXE/maI0OC8bNT7US+CuOcviGEJLl9+/WwEBbJwKBITJ4Vju8/Y8Y8dm1vjioVzDB6SpiIpZwxwQKPn/6xSC6aaYk1m8ORJZMMNaqYwXVYKFLYAalSypTGVuqbPs3PkhO49Y2dx2MCTEAPBFhI6gEyD6FdAvrM1tbuzI2/N0MISbvkwFh3uuZDhtAwYM7CMOGyViwlyKrXwxyPnkbCy+dP1jzd09i80R9LX0AgMNIzFHMmW2LnvnBkzihDpXJmiIwEvn7/Ez9pyNKvhzlKFWP3tiH3gMdmAkxANwRYSOqGK/eqQwIBS7wQcmSXDkcw3a4NISQl2pQkQy5qP/9IjJr0n/Ajl/awARb4+i0SoyaHIVzBY01WPrJCvnwdiU6tzVG+jBn6Dw8VFsqd+8Nx6nwEfKZZYsKMMLx+a7jM7uqVzODclt3bieEnK9gPeHosfmERhZx4bxPD3vIcdUOAhaRuuHKvOiTwq38bRHx8p8MRTLdrQwpJoj5+uIVwRw/y+HOxO8UXkjXvw6dIjJ8eVUQq7hLFV86baolNO8Jx4cof8UiWy4dPIkUs5Y594ThwxHCZN5R57jubfduJ4SeLhOSeQX/OnzrF2g5oMtfwe0uv4NBzhjbW6l9ars769FGH3uoOCQmN9RJvTedBF58HBYcgbWr7eHVBl4t/+fZTzMkuebJ4tVWsrLgv9Bb6uSt3xEs8ysqVmw/FJel5c2XReDxDNGQhaQjqPKbGBCLevcSvQR01bs8NYyegTyGZOpVMuKt3HQjHk2eRKFvKDM5tzOVZ26WLm6Fvd3N8+x6JFevDhZuaym8/4N2HqNbF7h3NUaywmVyAUhb3/iPhOHUuArMnWcrjKg25//z2tiHpqz+2voVkrdZuGNSrFZzqVVJ7km/ef8bsxVvgNaYPzM3/WEPp3eyjZ65hx3JPtfuJXvH56w9o7DwC9HTioQ1eGvcT34bnr95FzyFeOLt7PlLZ28W3ucr69ITj2m3/ihdkSBAumuam8jUfqRM//0Dxbvj67Ufk/dIzjX07N0XjuhXjPTfFfbl9/1mM98IVO+w3Yk6Ut8HjPZiBGrCQNBB4HlYzAiFHdiNgyQzNGnOrOAnoU0imtAemjrGElYIBhe6P9JwZhsBAoF0Lc9SpHjOu8MvXSIxQiHmUsr1XbgjHuUt/rI7tW5qjZhUzcackubQnehk2RpLm1LmtOapV4jjJOA+hgSskBiF5//FLtOo1DjcOL5M/L0hPIv72C0iQNWvR6l3YeeiMeAd7s+84FCmQWy+7QeLt5duPKJA3u1wYJ3RgEtv127tj46IxKFYwL5y6eqBJ3Uro1bFxrF33GuqFdx+/YvLwnij0Vy58/voD+46cx71HLzF3omu8p6W4Lywk442PGzAB7RMImD8JIacOar9j7lEQ0KeQlJCToKTkmLfvI4W1UVuFBGpyWxm+/zBcbKTiWij5hyynXIybgLEISXJzTpyzGh8+fRPAalQqgdEDncXb0617jxPCppBDTpiZmcFjQCe8ff8ZV289wpjBnfHkxVuMnLIEjetUxIadR0X7Hu0aoo1TTZXwyZXboOMw9HF2wq5DZ1Ewf04Md2kv6kv9OdaqgHX/HEZoWBgG92ot3vL2Xbsb33/6wbllXfTu1ETUp7627DmBNVsP4ZdfAFo4VkWH5rWRMX0a0deoacsw0rUj1mw7JN4En+jeDSOnLsWGhWNgbmaG9x+/wmvRJly++RCWFhaoU7WUWCNZF1duPoiPn78hTWp7tG9aC327NFX6Hji9eV21WX94e/ZHjYolUK+9O3p2aIgOzeuoZHDu8h30cp8prLoOebNHqUfucQobGDF5Cc5euQN6Y5xc0K7dmqNe9bKi7vT5G5Aja0b8/P3Hhd2uWW2CId8XSUj2795C8PHzD8DfnZqgR4dGoj1ZJOk9dfqF4NyVuyhZJD+mefQWFmIqdCaIy/NX71GnWhl0aFZbiP0fv/xEW2JLpZBDLnj07yhfQ4d+nqhesQSOnL6Cl28+oq1TTbh0bR6vt9tj+6lli6Rx/5vGs4tG4NeAdoj48Ia56IiAIYSkjpZidN2SK99rAj+XaHQbE21CxiIk7z56gSfP36JAvhwIDAzG2JkrUKNSSbj1bo0dB05j9PTlWDbLXQgthzzZsPPQWZw4dx0rZg+HJFhqVS6FNk41hIVxkvdanN+zQAhRZeXmvacgwXFu9wIcOX0V0xdsEPXJdS71V7daGbRpUgNUl1y2JGT/7uSEkLAwuE9chL1rpyF39kzYf/QCxs9ahfFDu4k/+67ZjZT2yTHRvbu8LxKVrRpVg42NNcqXKog2vcfj1tHliIiIRLPuo5E+bSr07NAIFD+5fMM+rJnngcOnrsDC3FwIK1qT6yhvLJw2GNUrFFe6JhK5Psu3g1zTZYr/hVEDnbFi037UqlQyhlCkDmic7QdOY9/aaSqPKbm88+fOKoTsyfM3RYiB5JInMXfywk00qFkOxQvnQ9ECuXH7wfMY+9KoTgVhHb1w7R7o/fNDG72QLXN6IQZvP3yO/t2aI6W9HRas2oEShfMJbq/ffUKDDsMwpE9bVKtQDIdOXMY/+07h6JZZQnjuPHhGCE8rK0ss37hPiM2tSyaIdRSu0VWIXnLP2yazhrunL7zG9lXJLb4/oywk40uM6xuMQOTPb/jZy8lg45vCwCwkdbvLdD0R3W/JxXgJGIuQJEJkrbt+5zE+fvmOI6euIIWdLRZMGQRlru012/6NIVjuHF8pt9ZVbT4Anu7dhWVTWZnqs15YP8mCRxauyk6uWOo1FJXKFpGLP6m/gMAglHXsgy1LxqOwQy7RXfMeY9C5VT00d6yKTq6TkTNbRnRqWVd8dv/xK0ybv14IU7Kktus7EZf2+yK5rY34nESzJCQv3Xgg4iX3r5su+oheyOpGfZDLedWWg+jVoRE6t475XG5gUDB6DZ2JPDkz4+DxS+jW1lFYL8s17INZ4/qhavliMfqeNHctXr39hCVeQ1Qe0PDwcDx4+hoPHr8Sc6A4zC2Lx6HwX7mFECRLJsW8SiWufWnkPEK425s1qCLalyrmIAQ0FRLOE+eswekd87Bw1U7sO3oBM8f2FZ+FhIYJ4b9t6QRhPQ4KChEC//nr92K/SFjePbFK1CUhuX7+aJQokk/8mayqadPYw71vO638ILKQ1ApG7kQfBEKvn4f/VHd9DGWyY7CQ1O3WD+pjgSIF1XmFXbfz4N5VEzAWIbn/2EVh5StbogAK5suB+09eCdeq73Q3jYQkCRaXbs3RUEnGcGhoGCo3dUXuHJnlwnDvkfOoXaUUpnr0jiEkyUpYrFZ3uYAimiQeG9WugPbNa4NEK1m+0qdJFQU0idR3H77ESDhRFJI7D54V1lASmtHLlHnrRBJMnaqlkTN7Juw9fB7OreoKkRi9bNxxFBt3HcXuVVNw9+FzdBs8HR1b1MWSdXvkltPobeKySFIG+N/DZuHRs9eCTZaM6YRrX4rDVJYsE5eQdBu/AGlS2WP0IOcYQvLRszdo3n00jm+bizlLtuDM5TvImTWquHbp1kxYb2l99na2KF+yIIJCQrErFiE52XsdSBCPdeuilX8KWEhqBSN3og8CQTvWImjjYn0MZbJjsJDU7da3aGyOhnU54Ua3lBPWu7EISUoOcaxZXljRqKzYdACXrt8XQvLh09do0WMMrv27FNZWf64eikuwxCYkyR1LIoji/aRCySpk1bp8wBdPX7yLIv7I/Vy0VjeVQpJiOJvUqywslNGLsoQTRSF55tJt9Bs5F6d2zItyZQ/FJJJAXTV3hBDXVPoMny3c4sqEJImlK7ceyrPYaYxug6bBLrktjm2drfSQ0NgkFBUtrVJFssJS3OLAMT64sHehsA5TIWtfQoRk/Q7uaFa/itjn6EJU+mWC9nnByh14+vKdsEhHLxSb+fDZayyd6S5iTKUwBVUWSRaSCfs3glsnYgIB3uMRcva/KxkS8VKMduosJHW7NWVKmqFPV0640S3lhPVuCCHZrmlNYWWTCsUNDvP0Rb7cWUVMJMXHkYuT7hgkIUluzNINeosYyeKF8opm2/aditW1HZuQHDbJVwgQsj4qCidyX1MsXfbM6eMlJJeu3wvxv5nuKPJXLrz98AVb95wQ8X1xCUlKzqFs64a1KwhxRfOiJJueHRujQqO+Il6wXvUyIoGF5k11lAnJbXtPYtzMlZg+6m/UrV4GD568EjGVwcEhwjI5sGfLGAeFkoS6DJwqQgkmDu2OYoXyiPCCA8cv4v6jlyJRp7vbdOFOpiuFDhy7CBJl8RWSB9ZPR4a0qbH737OYMHu1XLiSkMycMS2GubQXSTETZ68We+4zeYAIcSCrL+2RY81yIqHn8MkrKFuyAP49cRmHT1/F4ulDEBIaCpF9zxbJhP1DwK2TJoHfQ7sg/NXTpLk4I1kVC0ndbkTG9DJMHs0JN7qlnLDeDSEkKQtZsVQqU1iIo+FTlojsYIoldMiTXbguKbmECiW7kGCgQoKSEnOO/z/Z5s6D52jbZwIUYyRJSJLFMfpl2FK8o7KkFRJqfn6B6Ne1WZT+lFkkOw+YIvpu36y2iN+bs2SryNqWClkRyZqobG4U80hWTEq2oeQeuldy1LTlIjubSuliDiLZhqyys3w3i7+j5JHgkFC0b1obXds2iLHp5Lr1XvYPdhw8IxhScs/scf1gbW0pxKJzy3ro36NFjHYUH0pzJyEqFekeSRK35Iqm2EUqlMx07Ow1bFo0FkUL5hEWRZqrlIVNdUgER98X2k9yk1MZ4doBzv+33FJ7sqJKn1Eyk8+kgUK0Utm+/7SINZU+p3ktmjYYVpaW6D/aW8SOUqH4z9MXb6mMkSTxGxERITL8tVHYta0NityHXgj8aFNFL+OY8iAsJHW/+8u8Df8Kiu5XmXhH0LeQjI0UiaH3H78JIWFBzyNFK2SZJAuUqkxsQ+8Czf/L919IaZdco6tmSABaW1vJk3JoPSSiKEtZEldxrVGaQ8Z0qeOqGuVzigP98vWHGD/6Jelfv/+CmZlMWAs1KfTazYfP35AudUqlXL7//I3g4FClaySrKY1vZWkRY9/p/svUKe108kJQbOtkIanJKeA2eicQ8ekdfrm20fu4pjYgC0nd7/i0sRZIl5YTbnRPWrMR+K1tzbhxK9MlwELSdPc+Ua087PYV+HnGDDJOVItIBJNlIan7TRriYoGCDiwkdU+aR2ACTEAfBFhI6oMyj5FgAiHH9yFg0dQE98MdxE6AhaTuT0jX9uaoUoEzt3VPmkdgAkxAHwRYSOqDMo+RYAJB21YiaMvyBPfDHbCQNPQZaOpojiYNWEgaeh94fCbABLRDgIWkdjhyLzomELDUCyGH/2QoctEdAbZI6o6t1HP1SmZwbstXAOmeNI/ABJiAPgiwkNQHZR4jwQT8Z3og9NKpBPfDHbBF0tBnoFhhGQb05iuADL0PPD4TYALaIcBCUjscuRcdE/Ab2w9hD27peBTuni2Suj8D+fLIMGIgC0ndk+YRmAAT0AcBFpL6oMxjJJjA7yHOCH/9PMH9cAdskTT0GciSWYaJI1hIGnofVI4f/Bt48G/8plc85isp8euAazOBxEuAhWTi3TuTmvmvvi0Q8fWTSa3ZEItli6TuqadKKcPMiSwkdU9awxFISG7uo35j6xRAW1/166uoSa/B/Pjph7SpU4jXXXRRfv7yx7krd2K8bqOLsQKDgsWl2bpaiy7mzH1qRoCFpGbcuJWeCfzs7ohIv996HtX0hmMhqfs9t7ICFnrx6za6J63hCHoWkjfvPRVPCR48fkk+YXpmj96IpneXE1JGTF6CHh0aIn/ubKIbZe9cq9M/Pc03ZsZytGtaS61n9aS3wOdPHoialUuqMwTXScQEWEgm4s0zpan/7FQbkSHBprRkg6yVhaR+sPMzifrhrNEoehSSJLiqtRgg3mzu17Up0qSyx9OX74Sw7NG+Eeit5YSUwjW6ivet6Z3rhAhJekebnuX7/PUHTu/0gbVV7L8I0Vvc95+8RI4sGZDCzjYhS+C2iYAAC8lEsEk8RYDf2dbPKWAhqR/OLCT1w1mjUfQoJJ+//oDGziOwYeEYFC+UV+l0n718h0nea3Hx2n3kzZUF/bu3QN1qZUTdbXtP4tXbj3D7+8/zsR8+fcPAsT5YPmsYlqzfi+Ub9iFblvTirejmjlVR2CEX2vWdiGH92mHDzqOiTY92DdHGqaZKVPR+c922Q7BlyXi06T0ePpP/CF8qQcEhmOW7BQdPXEJwcIhYg8dAZ+TOngmdXCdj1MBOKJg/J9Zu+xcrNx/Ex8/fkCa1Pdo3rYW+XZpCJuMXnjQ6o0bWiIWkkW0IT0c5ARaS+jkZLCT1w5mFpH44azSKHoUkza9+B3dh4everiEK/5ULeXJklscVklBr2GkEihbIjc6t6+PitXtYsGonti2dIATaotW78ODJK3h79hdLJVHp2HE4zu9ZgE9ff6Bp11EY7tIehRxyIVOGNPj+47cQkiQE2zjVwJt3n4VIpfr2KZIrxbVi0wEcOnEJm33HgVzlIaGhmD3eRdQlobpq6yGQC9vCwhzHz15H+VIFUbZ4AZA1dM08D5Cb/vCpK7AwNxeilsZ0HeWNhdMGo3qF4hptETcyLgIsJI1rP3g2KgiwkEzY0fidKjU+Zc6IjxnS42OaVPiQMgU+2iXDBxtLfLCU4b1ZON5HhGDprRyw+JEbB57lStiA3DpWAiwkjfiA6FlIkvhbvHYPdh48I6Akt7VBvy7N4NyqrrBC9nKfiWNbZyNj+jTic6euHqhSrpiwKsYmJEkYquPartp8ADzdu6NGpRJKN6WR8wh0bFEHHZrXwckLN9FvxBy58Jy/cgf2HD4HH88ByJ8nWxQLo6KQpI6fvHiLe49eCvf4qi0H0atDIyGOuSR+AiwkE/8emsQKWEgq3+afadLgU+ZM+Jg+HT6mTYWP9nb4kDwZPiSzxAcLSSAGwz8iTK1zcvxkTVytFYKal77C3y8DVr90UKsdV4ofARaS8eOl19p6FpLS2kJDw/D81XscOX1VWB0XzxiCj5+/Y+6ybTi9Y54cwbiZK/HbL0BYBbUhJEkounRrjoa1ysfAfP/xS7TqNU5YMNOnTYmgkFDsOngGk4b3EK5ycqVTEs65K3eFAKZkHHJZJ7OxjmKRnDJvHdZvP4I6VUsjZ/ZM2Hv4vBDK3do66nVreTDdEGAhqRuu3KuWCZiakPyRLh0+ZcqEDxnS4hNZEO1T4GNyG3ywscB7Sxk+yMiCGIwANQWiutux+kZLOKU6iIV/lUHoF2u4nbyCx/YO8H1ZGBGRHM+kLse46rGQjIuQAT/Xo5CkZBtLKwuYm0V9e52shB2b10GBfDng4jEX53YvQEr7P67nDv08Ufiv3CL+kCyZ1+88hu90N/GZomtbskiumD1cuJupKMvajk1Izl6yFSfOXYdjzf9E5vmrd2FmZiaSeKRCsY+XbjyA55w1GOHaES0aVpULSYqXpPUoJv30GT5bzImFpAHPuRaHZiGpRZjcle4IJBUh+S19hj8u5vRphYv5jwXRBh+sLf64mGVheB8ejKDIcN3BjKVnz5e1UPpMRjiWHQbPooOxCNmx6d4dVL14Bw+zFcX/2jsLuCiQL47/6BSkQcVEBAG7uwM77ixQjLM9k9Ozu/Ps7vbsbj1b7G4URJDu2F34f2b4LxK7sMsuuW/+//ucx868efOd9e7nm3lvdgY4ITBWJ098KyyT6ugAaxdT+Z98u5+5KCQfPHmDBWv2YcygbnB2KAuhUIgLN7ywaM0+7Fg1iZftadVzAo/0Derdjou10dNWp9wvfPj0LReahzfN4mJ0877TPAFHfOdxwLhF/L7igF6uYHUdfb7/5HckX17bnnIMLU1IikQiNOk+FmP/+I0LQ3F7+OwtPEYvxOWDy3j01KF8SVR1Ko/omDh0GTiN38ls3aRmipC0L2eLOu2GYbbnALRqXAOPnr/HX3M38MglCcl8+7tALsdISMqFizrnFYGwHg2BpKS8mj7LeYOsrfDTygo/Lczhb2qcSiBqJB8xc4EYh4SkxCxt5WWHnmFO6La/Luo1u4Riwr2YWX06NiUVR9uocCy69wjmH3zhbeeCg6HO+BBumJeuFti5TYqqYcksKkiebzcwF4Wk749ALFi9F9fvPE3BwY6IxVE99kN2L9Fz9nou1Fgb2rcjz9xmTSgU8Sxt8fg2TWvxepRiIXnl1mPMXLYDIaERXLg1qVsFPYbOyiAkR/bvkqFIOROpHmMW4vbJNTzrW9xEiYlo0m0MBvVyhSgxCcs2HOQfMb9ZNvlsz/48WYjdkdy9ejKqudiDJeyI+7HM8/gEAXp1ag6PHm3y7deAHJOdAAlJ2VlRzzwkEDG0CxJDAnPdg8BiNlwgBpizCKIx/FkEUV8HATqa+KEJ+P9fIAryuUCUFVwpoTGWbv6Nd+/iOgMaUV8xrfoMbE0qxn/2z5dP6Hb1PtRi4uFvXxHHY53hFZicBEBNNgL0RKJsnPKsVy4KyRRxJhIhJCySRxVZeZz0jYk3dh/RrKgRdHW1M3zOhKK+nq7Ez9hY9mKOadEiOVJuh0Uug0IjYG5ilOkrNkwIs7udLHucWuEiQEKycO1noV1N5N+DIPr0Vmnr+1m8OAKsLZMFookxAooYwN9AJ/mIWSMpJYIoysdRUKXBSGfoxP6BSAhTg0vNJ6igt4p/OqXGLGxPtOa/tk+Ix/ZHj1HGK3k/QsvZ4XyiM678SP6cWuYE7MqoYdIYikjm2+8JvbWdb7eGHMufBEhI5s99Ia/SEYhePAkCr+TyGNJaoro6fhYvhgArS/w0N4M/F4j68NdndxA1kgUi2BFzLPLvIXneb/2xq30hfJcc9WjffjV0Ix7xX0+qMQe7Ei1THJzk/x1Dbz6EdkAo/1lUqZK4ruWM474l834R+dgDl4pqGD2EhGQ+3iJyjQgQATkIkJCUAxZ1zTsC73cshV+QLwLMTRFQ1Aj+RQwQoK+DH9rsDmISfiQJ4C9KvkNETTEC2593heHt5OMnW7tvqF1seopBz5pzsVdkkWaC08+eoNrNX3e84otZ424RZ+z5aqeYI4V0dON66nDvoVFIV0fLIgJEQNUIkJBUtR0voOud9cMLM/0eFlDvC5bbs3yaoOLpXyKwRdv9KBp9IWUR42rOwwGReZpF9QkNxrQ7XjD67Jfyc6GFCZ6YuWCjd8WCBSCHve3YVgMd26Qt95LDU5J5IkAEiECOESAhmWNoybAyCWwLeouBX68p0yTZkkKge7gjeuyrn/KpoXE02tTwBAQxKT8bXXMBDosyXprf8f4NWl1+AIh+ZacnGhngTTEXbPNzQngClb3x6KWBBnVISNJvQCJABAoHARKShWMfC/0qrkT6osX7U4V+nflhgcWEhli1uWcaV+o1u4hiwn1pfjay1kIcFZpkcLleTDRWP3wEm+ef0n6mrYXPZV2wL9gZ3pH6+WGpeeLD+BGacLSn4u55Ap8mJQJEQOkESEgqHSkZzAkCX+IjUPbl3pwwTTYlEDhxcCASQtKKnS6u06ER9S1N7+G1FuG4sKhEhgt9vNHn2gNohEdn+NyvgjOORjnjabDksYV5UxZM14SFGQnJwrzHtDYioEoESEiq0m4X8LWqPVpfwFdQcNw/es0dordpX7BxqfUYFXR/vfkrXs2QWktwSpix9h373EooxIEnj1Hh3iuJiw+2s8cZoRNu+lsVHDgKekrPIyoIMIeHh4iSsD1YINcs4y0z1naUywB1JgIFmAAJyQK8earmeuXXh/A8NljVlp0n6936oguMbpllmLt9+3+gG/E4w88H1V6Ks4IiUn0dFeiPsbceQtc3SGKfiNKlcVXDCae/2+bJenNrUmtLNcydQqV/cot3duZhQtL5TcYoujRbphpqeOmY/A52Tjb2xKG2lqbEot8fWLXtVQAAIABJREFUvvjyYt/sFZn0LTExCReuP0D9ms5g72+zJwrZu912pYvnpLtKty0QCBEcGpHvCppfuP4Qtao6wMRY+r//5IXxIyCYP4dZ2tYalSuWyzA8Lj6BF6/X0sof/y4hISnvDlP/PCPQ+8sl7A/5mGfzq9LE03wbo9Kp8hmWXLL8V9SymSERRf/ay3BBkPmziUdevUC9q15SUcaWsMFtfRcc+Fa2UOKuWVUdQzyo9E9+3tzcFpLNfhuHgMAQ3DqxOkWMMKHQqMuf/FnEF1e3IyFBgOptBmPNvNFoWr9qBnzrd57A24/fsGrOqAyfMQFWpeUgHNk8C47lS/G3uSs5lsMQ9w5yb4PY1/QDX13fIbct8YBJ8zZhYG9X/q64tHbt9hNMnLcRpUpYISIqBvMmDkKNyhWk9mdPT7bu5ck/T811+abDCAuP5O9+Z6dt3X8WJWws+Fvi4saegty7ZiqqOMte7uyLjz/au09CiWIWuLBvSRpXjp79D9MWb0WTelXg4lgWQ907ZnDVbeQ8VKpYDn8NT3uXPTtrUsYYEpLKoEg2coXAAv/HmPz9fq7MpeqTdI5wQJ+9DSRiaOm6D8ZRFyV+1rf2clwWZB6d6RgRivn3HsH0nY9UzAIrM3iZuGCrt0Oh2oqu7TXg2pIytvPzpuaVkGTvXbP3sFn798xNTF+yjf+aCUnW3nz8ipLFLFHEMGOiWm4Kyd5dmqN5w+opW6iupsYFXnYbE2I7Vk5CzSrSf68zAevevSX692iLRWv34+MXX2xemiwUJTWxkGTPTXZp2xDjBic/+7p84yGERURlW0iOnrYaDnYlU/aJ2cyOkGT7dfzCLfj6BeLghhlwdiiTsgz2vjl7M71np2ZS18eEqJ6Odr6JzpKQzO63n8blOoFz4d/g+vFMrs+rihOai/SxflNviUs3LBqFNtX/SlMOSNyRvRjkVnsFrgmyzspe//kDOl55ALW4BKmIE4sWwUtrF2z57oQYQcGP5I0eqgkXR0q0yc+/p/JCSLZoWA3Hz9/CtSMr+XvZrm4T0aRuFez59xIXkurqamBRqCmj3XhUMSY2DovXHcDZK/ego6MNfT0dOJQrmRKRvPvoFRas3otP3n78aPTZ608SI5JJSUk4dOo6dh2+wCN9Xds2BBOKVhaS38Nmgm7MH93RsVW9DFvo9ewdZq/Yyd8EZ41F1KaOdufH6SzCumzDIZy//gDx8Qncp8mj3XHs3H/Yuu8Mj8wVNTLkok+SgOroMRn1azhj4sje+Hv+JsTExkuMvoqdEgvJRVOG8Egm42ppXjSDkLx+5ymWbzrEOVWvZI+pY/rCvmxyZHTRmn0oWdwK4ZHRuOP1EhXtS+Po2ZucdzErM95vzl8DuZAc1Lsd7/PVNwA9OjbFCI8uEt89Z3YZ8zZ9/uKRxhMXbvP9nDiiF59zzfZjYCJTzGPmeA+cvHA7jR89OzfHy7df+NWErq4N+bjHL95j5eYjPCpd3MYC7t1a8c9YtPe210uwt9jLlS4G9oeVVo1/RVOV9fuQhKSySJKdHCfwUxgLq2fZP0LJcQcL2QQnDw9EfJBk0VO/2UXYpCsHJF6+UF0T7jWX4oZAL0sizvGx2Oz1GKUev8+0b5KeDj6WcsGeQCd8j87abpYT51GH5XO1YKS8q1R5tIrCPW1eCMkZ4/pi3c4TaNe8DhcRTBT8PaoPBo1fkiIkmWDZ9c9kLnhmL9+J63efcWHABMLGXSf5fTl2tM2iXK17e6Jzmwb4rX0T+P0Mhufs9RKFJBOiM5ftwMwJ/VHG1hobdp3k9yelHf0yIelQzhaO9qVSvgTsrt5wj8549d4bH7985xG72Nh4TF+6DU3qVeXRQCYWdxy+wI/mNTU1wI6qa1dz5Ef5nTymcCHFhJq1pSk/Ok7fHjx5g/5jF/G1GhkaYMm0oXjy6iN0tLXQvEG1DP3FQvLuqbUY/vdKLtaYCE8dkfzo/Z3PPditAxrWdsHeo5f5vcSL+5dAT1cHwyetwI17z3h0sLKTHUpYm2PbgXM8+soEr4G+LrfL9oX5NaxvJy7oPedswJLpw9C4TmWJv1GYqO89fA7unFyLy/89wqK1+8D81NDQwOevfug5bDaGuHXgc1awK4mJczak8cPFoQy27DuTcj3h2/cAtO0zEd3bN0aXNg3h7euPJy8/YNaE/nxN5csUB4vM3rj7jK//9sk1XLQrs5GQVCZNspXjBOxf7sOH+PAcn4cmAP694YbE17pSUUgqByTunKCpC7fqi3BLIH18asPT/Hzwx82H0AzMYm/VAB/7SjgS6YRXIcYFapuMjYBlc6gge37ftDwRkuP78XuQs1fsgrWFCT/CNTMxxoBxizIIyUqOZfmdRxYNE0ekUh9tb9x9CnuOXsLNo6ugpqaGzO5IsignE0Zu3VrybXnz4RsWrtmbImzS7xUTkiwaV6akdcpH6urqXLSw9jMojIuYgKBQXL7pxY/h184fwyNtpy7dweo5f6J82RLcL3GT5WhbfJwdFBoBK3MTrJw9EjOX7oClhUnKsXVqX1MLyfeffdFv9AJ+F/HQqWspR9urtx7F6St3U+4osqhdwy5/ptxDZULSvpwtj8CKmyxH2ywKaGZqBM9hku8vskgxi9oy0c+O2et3HInNSyagXk1nPk0t16FYNmM4GtauxP9Zkh+p77mu3naUR5XF+52ag0gkwttPPnj74RsCg8PA+26cAacKv47SlfH7kYSkMiiSjVwj0M/7KnYFv8u1+VR5os2vOqHozYzRATETaeWAxJ/HaheBW9V5uCtIW0ZIGlPtpCScePoElW89kwl7YPkKOBXvjDs/pfsok6Fc6lSvpjoGuBX84/lcwpVn0+SVkGxQ0xmu7pMgEIh4VIxlV0sSkkxIsYjj6V0LUKakDeeUWkiyRI34BAEWTx3KP8tMSDLhxKJoFqZp67kykWNmkrGkV2ZH22ev3ueRT3bX0dGuJN58/AZdHW1sWDSOCyfm1x2vVzySx46v2X1QFvnLSki+++SDrgOn4eaxf/gR/4Bxi7m/7Hi/q2ujFDEtTUiyo/XBnstgYWbM1yS+I8kEH9OzCyYPThnK1vdHn3bo1bk5F3DVKtnzY2t5hOS8VXvABNz0cf0yfIfZXtTvNJLvm5N9af756ct3eVRV7IckIZnej9RCkq2DtYVTfq2D/TNL1Bry1zK8/+zD7RezMseG3Sexf/00Hs1UZiMhqUyaZCvHCWwOeo3BX2/k+Dw0ATDZryGqnpCeGckYSSsHJOYXpWMCtyqz8UAge529/iGB+Pu2Fwy9/WXahvCyZXARzrjgl7/LmfTtoYFG9SjRRqZNzcNOeSUk2VEou9soEiWiQS0X3H/8RqKQrOJUDpWaD8SWZZ6oW90pg5Bk9x3PX3uAfeumZSkkfxs8Ax1a1Uff7q1kIp6ZkGT3GNs2rZ2SiMKOgdmRNBOS4say09nx8ZwVuzBpZB8uApmQ3LZ8Ij/qltRYeZ1xM9emHMkyIciOud9/8sGlg8t4hDR9Sx2RZEKS3SnsMXQW6tVwgo2VGT+6X7L+ABe2x7bO4cOZ8GIibvnMETwrW5qQrFDOlh/li1v6ZJvMhCQ7Kmd22ZUEcWO+svuxD89tgL6ersSIZGZCctmGg7h6+wnO7F6YBgM7NmcR1Hun16UkaDFfSUjK9FWnToWZwLu4MDi82l+Yl5hv1tYusjw89jTO1J/MygGJB4brmcOt0gw8kkNMsrF73r5Gs0uyZ+nH2BbHTV0XHPFJ/pN+fmtzJ2vC2ooSbfLbvqT3Jy+FZGpfpAlJdkeSCQQW3fIc0QsRkdH8niPL6GaRRHEEjyWa1KrqyI+U2d04SeV/Nu89Df7XUk84VyiN7/5BOHzqOsYP7SFxm5iQ7NmpKVqkytpmx9QswsaOye3KFOdHzT5+P/kxPbsDyYTk7iMX4VC+JKo6leeCrcvAafxeJBNsLOpas7IDBvRyBauVmf7+HkuEYSK13+9tMNS9A+8zftZ6HmljSTur547OkNiSXkiyxTBmTFx1a9eIC8l7j19j4LjFWDp9GK+xuevIRR7ZvXF0FcxNjSUKyU17TuHh07d8zujYOB7hlEdI/jV3A6//mDoKyiKrNdsO5fcqXZvVlltIir8nU8e4o1Pr+vALCMadhy9RoVxJzpbtO7t7eu7qfTCRS0Iyv/8biPzLFQJmz7YhRBifK3Op8iTGiTrYstE9SwSZlQMSDw7Rt4aby1Q8Fch3R7BpdCSW338Eq1dfsvRD3CHB2gIPjF2w42vG4swyG1FyR20tYN1S+dauZBfInIwE8rOQ3L16Mi86/vTlRwz+aykXZeyomGXwWpgV5UKSFSCfNH8jzly+x1fMsqdZdvLRrXPAommjpvwDF8cyPMkkQSDEik2Heda2uLGjaVaOR1LLrI4kEy8T52/iGcLMJ/uytjAy1Me6hWN5kgqLnLHGPmvZqAZme/bnCSZXbj3mQpiNY8fdqaN1Yh9YbcWt+8/A2yf5lGLGuH5o3aQWBk1YzKNt6xeO44k34iYWkqmjcaxoe+f+U1OEJOvLjnrZXUmxX+x4uFn95OQdFjlkon1gqqNtVnaHRUdZNLSqc3nsWTNFopBMTEzEtLF90yAUC0bGI30iDhOYUVGxnJU4Ksqi0tL8SL2HrA/bP3aPVNyG9u3IM8eZr5duJtftZeu6evsxDqyfzutTKrPR0bYyaZKtXCEw9NsNbAx8nStzqfokJ/8diPifmUfRkssBeQKC2ExxBRoWh7vTZDwXyP8aw7JvX9Dj6gOoR8bIvCUiU2M8t3TGxm9OECbm7ZFy43rqcO9B9yNl3rw87JjbQjK7SxUKRTyphUWbWJQrfWOvwGhpavDyO1k1dqePJbIYGxpILVuTlQ32ObPzIyCE+8Sys1M38RzmJkYZXucRJSYiLDwKpkWLpEnEST8nOxo3Nysqcb2y+CepDytNFBQSDhvGUUO236NM9DKu6deYXR+UMY4xDA6JQFFjQ/4Ckrix7wG7W6rMl3fS+0tCUhk7SDZylcCxsM/o+unXn6BzdXIVm+zIf32Q9DLrcjv1m12AjTDrKwf+RqXg7vgXXmVDTNoKE7Dn0WOUf/BGrl1IMtDDe1tn7PzphJ8xsmWRyzWBDJ2HD9BAtcp5K2ZlcJO6AKC3tulrQATkI0BCUj5e1DsfEIhLFMHw6WaIklj5a2o5SWDD644wu2Ep0xRdXKdBI0r6azViI37GZeHmMAFvs1lgfNxPP4y66QWdH3K+u66hjq/lK+FQqBPehedeMUeWGbpuiRa06GRbpu8RdSICRKBgESAhWbD2i7z9P4HOn87jRJjs9+YIXPYITPxRHzWOS86mTG+xUu1HsNdZLdNEPib2cLMfiw+C7Efpjr94hlrXH8s0X/pOAeUdcSLOGQ8CM2Z8ZstgJoOquqhjxCDZjsyUPTfZIwJEgAjkNAESkjlNmOznCIEdwe/Q3/tqjtgmo78ItIoqhz92N5UZSfv2q6Ab8USm/t6mjnCz+xOfhdkXk93DQzD77iMU/eAr05zpO4WWLYcLSc64/CO5Hl9OtP59NFC/VvbXmBM+kU0iQASIgLIIkJBUFkmyk6sEIkQJMH66NVfnVMXJdJM0sXuDh8xLL2XvjZrWM2Xu/8nMGW7lRuCrAmKSTbb54zu0u/IASBDKPHfqjtGlbHFdywXHfEtma3xmg9Ys0oJu3lzNVPpayCARIAJEID0BEpL0nSiwBH7/fBGHQz8VWP8LiuMnjw1AvL/sEbWWrnthHHVJ5uV9sKgMtzLD4CNUrMZi9bhorH/4BCWefpB57vQd44tZ4V4RZ+z+Wj7bNlIPdHZUw5ih8mepK2VyMkIEiAARyAUCJCRzATJNkTMEjoZ9RjfK3s4ZuKmsHr7dG3iuL/M8RUwi0bqqJyCMk3nMW8vqcCv9B/wUFJNswjnfv8Lj+kNohETKPH/6jkJzEzw1d8YG7+SXQ7Lbhg/UQLVKsovw7M5D44gAESACeUWAhGRekad5lUKg+PNd8BNEK8UWGZFMYN3bDrC4ZiUXnvrNL8BGkHU5oNRGX1nXgpvtQASI5JpKYmejRBH+ffIETndeKGQsqYg+3pRwwXY/J4TGy/7Mo3jSLasoVVuhDciLwVGxwPXn8s3cvrZ8/ak3EShEBEhIFqLNVMWlTPp+D4v8ZUvuUEU+yljzeP96qHOsotymZC0HlNrwc5u6cCvhgSAliElmd0hQADxve0H/20+5/U8zQFsTX8q6YH+IMz5HZF3gmY1t20Id3TpQtrZi4PNgNBOS47fIPrGhHrBskOz9pfRkr8ywotxmJkVkLowdHhGNO14v0bZZ9oQsK6ytpa2FIgZZ14oVu83evq5V1SFHC1wrDDMTA6/ff+XPK9aoXAElbCwy9GQFylmBd61URb1z0p/CYJuEZGHYRRVew9u4MDjS29s5+g1oFl0aw3a1kHsOecoBpTb+pFgDuBV3R6iSxCSzfeDNKzS6/EDuNUga8MPeCUejnfEk2CRTe3OnaMLaUrF7n0pxmIzIRyCXheSz15/4E3fnr/36frKn+dhb2TZWmZenevHmM3oOm42X17Zn+iJMagDsCUX2ZvTZq/fA3rFmjT1bOLxfZ3j0aJMlq/RvS2c5IJc7sGcM27tPQoliFriwb0ma2f+evwm3Hr5EdRd7/i510/pVM3jH3gyvVLEc/hreM5c9L7jTkZAsuHtHnv+fQJdP53Gcakrm2PdBPUkdhzYOQHbqv3dovwo6MpYDSr0ArxKN4WbdGxGJyltW68hwLLn/COZvvirFaLBdeZwTOuO6f8Zj/4oV1DBuOCXZKAV0bhvJRSEZF5eARl3/5O8gD/foBNOiRvj01Y8Ly4G92qGifalMV58dIXngxFXMWbELGxaN4+92h4ZH4t6j13j93hvTx/XLknZ+F5Lrd57A8Qu34OsXiIMbZsDZoQxfk/it62Pb5sK+bAmp62RCVE9Hmz/zSE02AiQkZeNEvfIxgbPh39Du45k89VBNlAjdsFgkGOlCpCX9OFMzVgCtmATEmeojiT15kklTY8qN/V89Yz/tqHgkGOrk2ppPnhiAeD/5k0bkLQeUekEPbJvBzaoHopQoJpn9VV8+ofu1B1CLlj0ZKDPQkaVL4aqmM0752qZ0Gz1UEy6OFI3MtS+oMifKRSEpjp7tWzcNlSuWy7AK9p52n5FzsXjqUJQqkfwHlnU7jqOIoT7cu7eCWEiOGtAVh05dR1R0DIa4dcDA3u2kEvlr7gaEhUdj05LxEvuERURh+KQV+Oj9nX9e0b40Jo/qA/tyyd9vJiQH9W7Hj9S/+gagR8emGOHRhb/R7fXsHWav2An/nyG8b5N6VTB1tDt/l5rZm7JwC/4e2Qe7jlzAz6AwrJk/WupcrD+LILZvURf7jl/h9gb2dMXvHaXXtU1KSkKbPn9hqHtHnLhwG47lS2HiiF58bN8/5+PR8/dcnKurq2P/uulwGzkXg9064Oa9Z3j78RvmThyII2duwq50cXR1bQhm79+zN7H36GV8/xEIB7uSGDf4d5QuaZ0pI2V+HQuCLRKSBWGXyMcsCdR++y8eRCt4Dy7LWSR3KH/2BUrd/FVyJqyMOZ73qZ1G6Fk994XD8adcRLL2YGRTRJTI5Gg0Cai8+y7v+6xv3ZSJdcNiUHXrbeiFxiDeSBdPPeoh2jL5ub+K/z6GukCElz1rZnMl0ocdutsLak9luxuY3oq85YBSj79bsiXcLLsjVsli0k4Qjx1ej1HW661SWV2xb4l7anaYMo6ikUoFm5vGclFIsmW17u0JHW0tDOjpCqcKpVG2pE3KHUl2b7Jqy0E4unUOKvxfyE1euAVmRYtg/NAeKUKyXYs66NCyHu49fo0dB8/jwv4lEu//sfnOXb2PCbPXo2/3Vmhcrwrsy5SAqYlRCuGIyGgcP38LVZ3LQ1tbC1v3n8GXbz9weNOsFCFZrnQxDOvbCfp6OvCcswFLpg9D4zqV8eq9Nz5++c4FV2xsPKYv3YYm9api3ODfUny1sjBF93aNoKurw/8ubS6xSGbR2t87NuERxrmrduPuqbVcmEpq7JpA7+FzcOfkWlz+7xEWrd3H+2toaODs1fvwnL0e6xaOhYGeLr8jyUQxF5ndW/FrBK0a18SclbtQybEchrh3wKlLdzBp3ib8ObAb6tVwwh2vVzAy1AfjnRmj3Py65oe5SEjmh10gHxQmsDv4Pfp6J/+pNbdbqRvvEWNZBCHlLGDwMxI1NtzE14Z2+NQ6uXSM9TMfOO9/iO+1SsOnnh0XmCJtDYi0JYuNYg+94XDiGdSFIgRWtEkjJNlcFm/94TWkEapuv43IYkXxsbUTdMNjUX/RedzxbI1YE9lL9cjKas279rC6ai1r9zT9slMOKLWBW6XbwM2sCxJy4Gn1Sf7fMfTmQ2gHhGZrbZIGRXRvCaOWDkqzR4ZymUAuC8lv3wOwcfcpLkxYE99XdO/eEqLEJJmEZOo7ku3cJ+GPPu3RuU0DbNh1EjFx8dyucREDDOzlCpFIhFOX7mL9rhNcnLHGRJLn8F4pR77syJ2Jsi8+P7gAZL69ur6D901/tM2ElpmpETyHJd8pZJHGJy8/ICAoFJdvevHo6dr5Y1KE5IOzG/gaxU3aXJKO7Rt2+RNzPAfwSKektmD1Xh4NXTVnFFhktX7Hkdi8ZALq1XTmYrh9379x/8x6GP4/uYitZePi8WhQyyXF3IjJK1OEJBOlLBK8YPLgDNNlxiiXv7F5Ph0JyTzfAnJAWQScXx/Eq9jkI5W8bFV23oFeSAzujm3Bj6Ybzj+LKGtjPBlYXya3NOKF0I6Oh+PRJ1xwpo5IMttxRfXxtlMVlD/3EkY+IXg0uBGcDz5Ekro6Xv1WXaY55O00JqA26h/99S9becfXb34eNoID8g5L6X+jTDu4mXaEKAfEJJvk1LMnqH7zabb9SxlobQLMclPcDlnIOwK5LCTFCxUIhFzssEja2h3HucCpVdVRbiE5buZaftdy6hh3MGEVFR3LpzAzNeaRwdQtODSCC7xVW/+FtpYmv1PIjpT7j13EI2+1qzoiLkGAE5kIyXmr9nBxyu5XiqN+Nas4wNGuJN58/AZdHW1+H1OSMMxsLkn9mUge0b8LXCVkqTN+9TuNRJmSNnCyL82XefryXTRvUI0LQWlCcu+aqajibCdRSNZyHYqJI3qjW7tGabhlxSjvvrx5MzMJybzhTrPmAIGtQW8w6Ov1HLAsu0l1USIazzqNgErF8bp7dehExqHhvLMItzXlEUYNgQjB5S3xsa2z1IikeLZKe+5DLTExjZAsfe0dzD4EcPHIRCUTqN9rlEa9ZRdxa1JbHu3UD4xEtNWvoyrZvZfes2FMSfy5s5VCprq2nQr16Oy9ic0mvlq2A9yKtlfIh8wG9w4LxvQ7XjD6lJzJmq3WtzlQ/1epJJYhy5IZtDQ1pB7HpZ+HHWeyMZZmRSVm4rJ7W4mJiRJLxERGxcBAXw/qEu7VZms9qjgoF4Uki2ppaWvycjOpG4u89enSgt9FrNxiIPavn8ajZKxJOtpOHZFkR+WdWzfAsH6dJO5edExcmogg63Ty4h1+H/HppS1YvvEQ3n32wealntwv8XGxtIhkaiHZ0WMy2jatnTL3tgPn8ODJG6lCctGafVLnkldI3rj3jN9bHNm/S8q6fX8E8mjqw3MbEBAYKjEimZmQ7DJwGmpVccDfo/qkYZmZ36r4W4aEpCrueiFes/3LffgQH543K0wCquy6A7N3Abg9sQ3ijPVg/C0ENdddx0+nYvyYmt2RZJHEIEcbPHOvk6mfkoSkXnA0amy6CRa1TNRUx6M/GqLcxddcQAZUsUWV7Xf4zxO1NHB/VDOlJuT8u3kQErP3lDVfZ+XaXiivs0ahvblUrjP6GbdVyEZWg7d/eIvWl+4DIjkvZhobAIsHpJi/++gVRk9bDfYfbtZYlMZzWA84VUjOIk3fmEBkR5Frth/jH7F7a2vmjc6QhMHuba3YdARXDy9PY4IlMty8/5zfW2MJDg1rV+Kf/3f/OZasP4AT2+fJXCImK0aF+vNcFJJMZC1Ysw9jBnWDs0NZCIVCXLjhBSZUdqyahJqVHXiSSBXn8hjUy5Uni0xfuh2dW9dPc0fy3N5FsDQzwcmLtzFr+U4c2jQzJSqXfq8GjFvERalr8zoobm3OI5BzV+7ifwDZsXIST+a59N8jbFw0HgkCAXgWtIwRSVY6x65McR759PH7idkrdvF6k9IikpnNJa+QZElETPimPoYWZ2qzO5wsQirpaDszIcn823/iKk/CqVfdCQ+fvkVMbDyvQ5kZo0L9+0PC4khIqtqOF/L17gv5gD5fLufJKh1OPEXx+1+4uGMJN6yJheR/U1wRXyT5XlDJWx/BEnSuzOsCZJLYK0lIihemHxSFGHNDGPyMQJ2VV/DfZFduU6SjyY+96y67hK+NysOvZvIRjzLayVP9Ee+rWIHtDu1XQidCsSPkC3bd0N9IsehoVjzqxUZj9YNHsHkux1vuA1sDtexTTN9//AY/g0N5EkJsfAJmL9+JpMQkftlfUnv68iPP0N29ejJcHMpi9bajOH35Hi4fXMYjjOwu3R+eS/m9NpawkFpIfv7qx+sJsiSDM1fu8YQK9h9vFhHtMXQmhvbtxI/4qMlAIBeFJIuYsePn63d+/Z5g9wcnjezDs4ZZu3r7MWYs3QFWPLy0rTX/g0Ld6k4YN+R3vHz7BT2GzuIRRvEfWCaN7M0zuqU1loG8df9ZBAT+ugbE7hyyo2krcxN+x3DU1FVghbtZY38gYX8YySwiySLk08b2xZ2HLzFx/ibuK/PJvqwtPyJn33mxr6mjp5nNJak/O9pmEcf0BdjFgpHNw36/pW5MYEZFxcJzRC9eXzL1HU1JpYxGTfkHLo5leDY3ixiz5JvU91dZfU+WDZ4ZIxm+ZYWqCwnJQrWdtBhGoMn7E7gRqcDxpJwY1RKT4HTYC1bPfHm60HX0AAAgAElEQVQSTHipX0WEWQSy8ezTeDS4IULLJr+iUPr6O9idf4XLC7pmW0iKXay67TbP2n7fvhLqLb0In3rl+F+Vd99DgoEO3nTNWHBXzuWldD94rxfUn2Qvc1tspHSFL6hhlZz9qUg7a/cbBhnJXyRd3jkX+HjDjb3bHRaV+dB00UhJncUZoM+vbJV4LM2OFN98+MqPFFljSQtNu4/Bkc2z+H+42D20oJBwXL31BJv3nUkjJJntgyeuYc+aKfwo8o8JS/h/MK/ceowNu07g0MaZFI2UdfNzUUiKXWJ7GxIWySNqqTOoU38eFBrBhZ6kxsoE+QeGwNzEmJfhkaVFRseCZWibmxrzrPH0zS8gGCbGhtDTla/MGFvLj4AQXodRU1O2P3hmdy5Z1qmMPimvDpkapbmGkN/9VsbaZbFBQlIWStSnQBG4EumLFu9P5ZrPLHuaHWe/6FMbUanuJsaaGSBRQx21/7kKVs2b3WvUiYhF1e13EGeiz0UnE5p1VlzG55aO+F4r+ciTCVN2n9Jl/wP+a1ZKKFFTI0M9ySJ+4ai15ipuTmsPgZ4WKh55zMe/7laNi8ovLRzwo2pJpXFY9cEVxS4Xk9leUMJHaKnrw1gz7ZiWrntgHKV41PiUfU8MMZReU05mR7PoaCES4uDjx3C490p6z7GdAYdfdSQldWR30NgxoriMSvo+rDRJUeMimDL6V7IOi5ikj7KwaOOS9QfTCMkPX3zRZ8RcXuqEJTycuXwPaxeMQZcBU3k2LYsqsYgmO8pkpVCoZUKA3tqmrwcRkIsACUm5cFHngkKgn/dV7Ap+lyvuNpl5Cppxggxz3RvbggtLlvxSfcst6IQnZ0+yRJjHA+oj3lgPrLB4o7ln8KlVRXxpllwyRhyxTG3wfTsXfGtYPs0c1bbcQritSUqZIXaMXmn3PWjFChBtYYjHfzSEQF+26IQsoEYG1kLjI8n37qS1SGEA3kZdxNuoC4gRhaC8QVM0M0+OsImbkWkEWlXxBITJZUkUaccr9MZwg8aKmJB57MhAf4y95QU93+SSKSmtrgPg0TJTO+Jo5JZlnvxYUlIb7LkMDna2/MhS3FjW6MzxHvw+m7hJEpLsfuWY6Wvw4u0XCIRCzJ7Qnx+n7zt6GesXjsWgCUt49m5sXAKWzxieJktVZgDUkQgQASIggQAJSfpaFEoCXxMiUfrFnny1NlZMPElDPeWuZE45px0Zh4T/38dU5hx1Yotj/I60iS7RomAIE+NgrFUciRBhp09PiJIEcDRsDX0NU3iF7cHAksegrpa2ZmaD5udhrUA5oNTr+tfBHaP0GyhzqZnaOvzqBepf9Uruw7Kj5/UDTJOLwktq7H7Z0InLMWtCf3RvL130soikSdEimPyn/BFJ8bzsOJwdR7I7la7uk3jNPZYcsGXfGX7svWH3SQSHRKSJeuYaOJqICBCBQkmAhGSh3FZaFCOwNOApPH2TX4ehphwCR7cOgij5cR7etvv8hromg+Bg2Jr/89OII3gbeR49i29BYpIQW791QXOLiSgrQegpWg4o9YoOOfbDGL16ylmkDFY6RoRhw85jQPcGQEvp91DFr4jM//sPdGqdeR1Rdkfy7UeflKfr0t+RFLslKSKZ3mWWHMAyeLctn8izbllSx7xJg3D2yj3sPHyB1wukRgSIABFQBgESksqgSDbyLYGG747jVtSPfOtfQXPs5Jn+iP/2647dvu8D4FykAyoZJdduixIGYu/3fuhXYj90NYxxLWgpYhLD0M5yboalVq79EOV11ioNwQHHARinV1tp9rIyVEtfA8fL6kntxsQcK8kzcWRvNE31EgcrFs0yWlkpkfmr92LlrJH89Qxx1vaufybDxbEsVm4+gvPXHqRkbbPj6/gEAS7e8OKfnd2zEJoaGhkSGlhiQJvef6UcYbP6eryMybrpWLfzOM/uFb8/nNUa6XMiQASIQFYESEhmRYg+L9AE7kUHoO7bowV6DfnJ+f0PekDz0a9j3JvBqxEi8EZn62XczXChHw58H4SexTbz4+4fcS9xLXg5ehffytKIMixFGeWAUhvdW3EQPHWV/9a4pD04XVYP1fSlJ67MWbELB05czTCU1aTr0rYhL/nCnmM7tnUO7MvZgglF9qIJiyCyxsTmpsUTUu4zskSdTh5T0tjr2Kpehufbjpy+gau3HqeUGWLCcfysdfwdZHbsvXDyEFS0L5WfvlbkCxEgAgWYAAnJArx55LpsBGb98MJMv4eydaZemRJY8bEtSlwqntJHHIG01asBS217vIo8DTU1dbiV2A11ZJ0drKxyQKmd3uU0BJN0crZm4gRLbYyzVF4iU2r/4+ITeCkYG0tTpZbsYa/lsOLQ1IgAESACyiRAQlKZNMlWviWQ27Ul8y0IBR0bElQdLQ6nvRMYEP8Wt0M2IEr0E1baDqhr+geMNG1knqmV624YRV2Rub8sHbc7D8MU7SqydJW7T10DDfxbRvqRttwGaQARIAJEoAATICFZgDePXJedwIvYYFR6fUj2AdRTIoHq8TaYtK2dUukYm0agpZLKAaV2bIvLCEzXyrxcUXYWcsVOH466ad9Gzo4dGkMEiAARKAwESEgWhl2kNchEYFPQawz5ekOmvtRJOoFj2wdBmPx8tISWJPEuZFY8GzQ/B2vBway6yf35xkqjMEvTWe5x0gYsLqYDN9OMr4AobQIyRASIABEoYARISBawDSN3FSPAhCQTlNSyT+DEOQ8keKetC/kl5jZY4k0D0+EoZ9AoW8a7tp0C9ejv2Rqb2aD1lUZjjmZFhe0yAcmEZOrGinyHhUfx+o8sOUbWxt4iZk3Sc3gCgRA/g8NgYVYU2lq/OLOMbfZWt6xP4MnqC/UjAkSACChCgISkIvRobIEkUO/tUdyNDiiQvucHp/c97AEtr7RJG9/jnuC/4LWoYzIIpfV/vcKS2l9WsFyUlAAtNcn3C6vUeQg7beWVA0o995rKYzFfI/nloOy06voaOJWq1E9MbBz6jJyH9598Usz17tICk0b1TvMWb5r1JyZh6/4z2HXkIpiQZMKTvYctbl98/DFjyTY8ev6e/2ja2L7o2akZ//X+Y1f4+9qs9enSHAN7J18vYHba9PkLp3YtkPoOc3bWS2OIABEgArISICEpKynqV2gIvIsL4/clE5JEhWZNubmQpZ9bo9SFzN+VTu2Pf/wrvIm6gE/RN3nNyTomA6W626H9CuhEPMuR5ayqPB6LNOzltl30wX2MttDGkA4NU8aySOSOQ+fRuXUD2Fib4c7Dl/z1mt2rJ6Oai+Q5WMHxY+dvYVjfjmjTtDYEAgGsLEy5zYCgUDTrPhauzWqjV5fmqFi+NGLj43mWdWJiEhp3G42tSz2hp6fDa0Q+vbQFWlqaWLbhIISiRKoLKfeu0gAiQASURYCEpLJIkp0CReB0+Fd0+Hi2QPmcX5wdFFwNrQ9JL68jTIqHppoOfzJxn29/RIuCeE1JlskdGP8e/WwPSF1KaYfPqGE5O8eWuryKJ5aq28llv+aG1TDRUMOOVZOkjvvk7YeOHpNxYsc82JX+VR5JPED8So24hmR6Q4vXHQB7j/v6kRXQ0EhbNom9StO6lycend8EbW0tuDTrj+Pb58KoiAE69P0bZ3Yv5Mfg1IgAESACeUGAhGReUKc58wWBtYEvMfLbf/nCl4LkhEu8JaZv6yjR5cN+w1GxiCucirTnn98KWYef8W/R1eYfxCdGYYfP7+hkvRTWOtLvLOZEOaDUzi6pOhEr1MrKhHyejQ5uzF6GyOgYfmzNWhEDfTjYleS/9vULxKFT13Dl1mO4Nq+DER6dJdpln/859R9+VP3hiy90tLXQvmW9lGcTmQjV09WBtYUp/ANDuP1hfTvB2tIUosRE1G0/HHvXToW+ni5a9ZzAI5JMfOrr6WDs4N/AhCo7KpfnnqZMAKgTESACRCALAiQk6Sui0gSmfL+P+f6PVZpBdhZ/bOcgCGMyjtzt64bqxr25mGQtOOELjvwYgYElj0JTTRenAybDUNMCTczGSp3W2CwcLSt5Is2j3tlxMpMxC6v9jX9QOlOrf1poY5KVNkZN+QdXb//6jtSs7JASnXzz4Ss27z2Np68+oW71ipg53oMfOadv+45dxrxVezBqYFdUKGuLd599sHrrUSyZNpQLUKcmHqhdzRFd2zbi47cdOAt2fH5821z+z1v3n+VH6az16tQMHVvXR9eB03Bh/xKs2vIvbt57DoFQyIWs+F6lkpGROSJABIiARAIkJOmLofIEhn67gY2BlMktzxfhxAUPJHzOKJguBs6FhpoWmptP5ObiEiOw06cnfi+2ESZatvgU8x+uBS3DoJLHMi0T1KDFWVgn5Gzdz/nVpmANkiOL6Vv6DG32Lra4FTH8FZEU/ywyKgbNfx+HqWP6gj1bKElIsucST+6Yn/LR3/M3ITYuAStnj+RC8p+5f6J5g+QrA199A+DqNjHl+UT2s8joWCQlJvIj7elLtsHG0gw9OzdDg06j4HV+I16988aMpdv5UTc1IkAEiEBuESAhmVukaZ58TaDXl0s4EPIxX/uYn5zb8+g36DwwzuCSf/xrnPCfgHqmQ2ChXR4Pw3bBP+4VPEoe4tnaiUlCLi71NZKTTDJrXdtOhnq0X1bdFPp8TrWpWI+0iUOdjTWxzlb2Uj5iB9q5T0LXtg1TMqpTO3bj3jMMn7QCzy5vhaZm8h1I9v41ew5x7fwx+G3wDB6Z7N+jLf9M/K72wQ0z4OxQJs0aWXZ3jyEzceXQcrCI6PjZ6/HfsX/wIyAYLXqMx8NzG/gRODUiQASIQG4QICGZG5RpjgJBoMun8zge9qVA+JrXTi760hJlz5eS6MbziKO4G7qFf8bEYzPzCSitX1dul6vUfQA7rXVyj5N3wMzq07EpKTlBpo2RJraVzFqEPX35Ea/ee6NFw2owNjLEmcv3eJRQnLXNIpjzV+/FylkjUaqEFY8mNv9tLNy7tcJwj054/uYz3EbOw9Qx7ujVuTm2HzyHbQfOYf/aaWARz+WbDuHq7Se4tH9phrqRf83dwI/HWQmgiMho1O0wAvdOr8PLd1+wYPXeNFFPeVlQfyJABIiAvARISMpLjPoXagIdP57DqXDvQr1GZSzOI6Qy2h2sKdUUizzGJobDQMOM94kRheJe6BZ8jX0APXVj1DUdjFJ6tbJ0JSfLAaWefFqNmfhmYIudpbIWkWzcizefMXzySl7HUdwmjuyNvt1b8X+8fucpRkxemeZo+u6jVxg9bTWiY5KfBeJ1J0f24lnaCQIhpizYjLNX7/PPWFmglbNHoJJjuTSMWHZ4r+Gzcf3flSlRR1YC6PiF29DS1MTYwd3RoWXGo/UsQVMHIkAEiEA2CZCQzCY4GlZ4CVBkMuu9dUwwx+ytkjOUJY1m2dyRwgBUMuoCNTV1PA7bj842y/nxd2atjMNnVM/BckApc9tWB5qOy3rhqXokJSUhLCIK0dFxPLtafGSdmRGRSAT/wFCYGBtKPH5mdy1Zkg2zp6amJrM/LOKpq60lMdFHZiPUkQgQASKQDQIkJLMBjYYUfgJ0ZzLrPT6+exAEUZL7iZIEiBT6o6iWLY9G7vbtg242/8BcO7mG4+Pw/fgScwfdbFZnOVEr110wirqaZb9sdyhTF2g4MtvDaSARIAJEQJUJkJBU5d2ntWdKYMi3G9hE2dxSGR2/2A+CT1oSP78dsgGhgm9obzUfgqRYbPvWDb2Kb+VFyVn7EH0Nd0M3o2+JfVl+C43Nw9HSJYfKAdk3A+pIf2knS+eoAxEgAkRAxQmQkFTxLwAtP3MCVGdSOp9dT7pD757kF1UCEz7g6I/RaGs5EyX1auHMz6kw1DBHY7MxYJ+xepJl9evzf5al5Ug5IJdOQNXfZZme+hABIkAEiIAUAiQk6atBBLIgQC/gSAY037s5yp9LW5omdc8rQYvxOfo/NDAbDm11Q1wOXMCPusMEPjDTLosu1suhoaYt8/dPqeWAankADi1lnps6EgEiQASIgGQCJCTpm0EEZCDA3ubu/ukC4pNEMvRWjS5uoS7odKC21MUmIRFPw4+AlQNitSO11Q1go+MExyJtUUpP+jhpBpVSDkjbAGgwDChRVTU2iVZJBIgAEchhAiQkcxgwmS88BN7FhaGf9xXcj/5ZeBalwErKCUywcEs3uS1Ei4LhFbYb3jH3oK6miQ5WyZFKWVqH9suhE/Fclq4Z+1iUB+oNBoyLZW88jSICRIAIEIEMBEhI0peCCMhJYMjXG9gURE8qMmwn9g5Cwq9SijKR3O7zG3TUi6CGcW8kQoQHYTtlSrphxss4fkJ1izkyzZOmkxKTahITk8D+p6GunsGP8IhoGBsZyO8fjSACRIAIFFACJCQL6MaR23lLgAlJJihVvR273BfCD7Lfc2QZ3Ht8+6K/LXtHWw2xojDs/e6BQSWPy4yyVbtdMIqUsRyQmjpQuz/AhKSUxoqBDxq/GLFx8Ti8aVamfrDakTOX7eB9Zk3on9L3Z1AY2Iszn776wdbGAoumDoFtMUv++YpNh5GQIAArWE6NCBABIlDYCJCQLGw7SuvJNQIvYoMxyucWbkTm7HvQubagbEy042k3GNw1kXkkqy+573t/OBi2RnxiJN5EnoO1rhM6WC2U2UZRi3C0cJ4AiASZj7FyAFhSjYn0Y3MmDKcu2orj52+hon2pTIXkhesPMXfVbv6aTff2jdMIySOnb+CO10ssnzkCUxZugV2Z4vzd7MDgMLA3uE/tWgArc9k5yQyDOhIBIkAE8pgACck83gCavuATmPXDCzP9Hhb8hWRjBXO+NYPDmbJyjWSFyq8GLYWWuj4vAVTBsCXUkPGYODOjDVucgVXCYeldKncDKnfN0q/Ne0/zZwnbt6iL89fuZyokWcSSvW29YtMR6OhopRGS7J1tS3MTjOzfBVv3n8Xr995YNmM4Fq3dD00NdYwf2iNLX6gDESACRKAgEiAhWRB3jXzOdwTuRgfgL9+7uBX1I9/5lpMO9QhzQvf9dTOdIkTgjfM/Z6OoVgmYaNnyvxfVLAFjreLQ1zDNtntd2/4N9eh0vC0rANV7ASyxJot28cZDzFm5G0c2zcSNu89w+PT1LI+2mck5K3ZBKBKlEZIHT17DgydvuHhkorJMSRu0aVILnfpPwfm9i/m9ye/+QShZ3Cort+hzIkAEiECBIkBCskBtFzmb3wksDXgKT9+7+d1NpflnKzTG8s2/ZWnvZ/w7hAl9ESZgf/kgTPAdEcIfSEoSQV/TFMaaJWBn0BgOhq2ytCXuUKXufdhprf/Vv3pvwKmdTONfvPmMgeMXY/uKiXCqUAaHTl5TSEj+CAjGn9P+QURUDHS0tbBm3mjsOHgeJkWLoGm9qvhz2mro6WpDX08Hm5d6oqiRoUx+UiciQASIQH4nQEIyv+8Q+VfgCHxNiMR0v4fYFfyuwPmeHYdP7B+IhDA1OYYmIVIYCD0NYyQlJSJc+J0LTGFSPL87KU/r3sgDKNcQqNIdMDCXeejclbtx99ErNKpTmY958+ErP47u1q4xhnt0RhEDPam2JEUkxZ1Z1LG4tTm+fQ9A9z9m4NKBZdi09xT0dHX4sbfHmIXo1bk5WjepKbOv1JEIEAEikJ8JkJDMz7tDvhVoApcjfDHnxyPcjCrcyTjHrrpD+E5Hhr1KglfYXjyNOAJRUgL0NIri92IboKtuJMPYjF3My6vBpVUAzKoWl3v8rQcv8Pbjt5RxT15+wPM3n9Hvt9bo3aU59PV0syUkxYMmL9yCUsWtMMS9A/r+OZ8L1E6t6/OMbxPjIhg9SP76m3IvkgYQASJABHKBAAnJXIBMU6g2gX0hH8De7PZOiCyUILY974oit7O+6/gp+iauBS9HfdOh/Bj7RcRxhAv80NR8vFxcjEuooUJbdZSsLV+CTmaTpD/ajoyKQd/RC/BHn/ZwbZb8Co9IJIJAKML8f/ZAJErEtLF9oaWlmaGe5Oevfug5bDauHl4BQwM9LN+UnBQ09o/ucB81HwN6tUWz+tXkWjN1JgJEgAjkVwIkJPPrzpBfhY7A1qA3WB7wDK/jQgvV2mb6NIHTabss1/Q84hgihT9R33QIEpOEuB26gf+9sdmYLMeyDkbF1FC+pTrKNFSegBRPnF5IssLi9TqOwNQx7vwomjXWZ9bynWl8nfPXQHR1bZjmZ6yeZMXypeHRow3/+btPPpg0fxOCQsLhaFcKy2YOz/ToXCYY1IkIEAEikE8IkJDMJxtBbqgOgd3B77Hq53M8igksFIvuFu6InvvqZ7mWcKEfjv4Yzd/b9ot7wV+1Yc8jWuk4ZjrWpLQa7Jqro1Rd5QvILJ1WYofQ8Eh+rE2NCBABIlCYCJCQLEy7SWspUATOhX/jTy0eD/tSoPxO76y1yACrN/WSaQ1BCZ/wMfo6jLWKwc6gCbTUpCe1FKuijjKN1GFTSZ5EHpncoE5EgAgQASKgJAIkJJUEkswQgewSeBsXhh3Bb8EilX6C6OyaydNxJw8ORHyI4oJP1xg88liqvjqMbBS3l6dQaHIiQASIgAoQICGpAptMSyw4BI6GfcaBkI84HPqp4DgN4Oh1d4jeyJK5LXlZxaurw7aWGkpUL9jH1wVq08hZIkAEiIASCJCQVAJEMkEElE0gQpQAJipPhHkXiKPvLS87w/g/2es4Qg0oVkkdxaqqoXg1dWjpK5sg2SMCRIAIEIHcIEBCMjco0xxEQAECcYkinI34igvhPjgb8Q2+CVEKWMuZoVN9G6PyqcyfJTQwV4NlRTVYOanBxkUdGto54wtZJQJEgAgQgdwjQEIy91jTTERAKQTexYXhRpQf/ov8gf+ifoC9pJPXrVOkPdz2NErjhqGlGszKqcHMTg0W9mooQnce83qbaH4iQASIgNIJkJBUOlIySARyl0CAIBaPYwLxJDYIL2KD8So2lP89t5qGmhoqa1hi3f1OYMXCi9qqwaSUGnSy92BNbrlN8xABIkAEiIASCJCQVAJEMkEE8iOBz/ERYH+xiKWvIBp+CdH4KYxFkDAO/oIYxCYKEZMoRGySEOz4PH0z0dCBgYYWjDW0wX5trqkLS009FNM2QAktA5TSLoKyOkb8L2pEgAgQASKgmgRISKrmvtOqiQARIAJEgAgQASKgMAESkgojJANEgAgQASJABIgAEVBNAiQkVXPfadVEgAgQASJABIgAEVCYAAlJhRGSASJABIgAESACRIAIqCYBEpKque+0aiJABIgAESACRIAIKEyAhKTCCMkAESACRIAIEAEiQARUkwAJSdXcd1o1ESACRIAIEAEiQAQUJkBCUmGEZIAIEAEiQASIABEgAqpJgISkau47rZoIEAEiQASIABEgAgoTICGpMEIyQASIABEgAkSACBAB1SRAQlI1951WTQSIABEgAkSACBABhQmQkFQYIRkgAkSACBABIkAEiIBqEiAhqZr7TqsmAkSACBABIkAEiIDCBEhIKoyQDBABIkAEiAARIAJEQDUJkJBUzX2nVRMBIkAEiAARIAJEQGECJCQVRkgGiAARIAJEgAgQASKgmgRISKrmvtOqiQARIAJEgAgQASKgMAESkgojJANEgAgQASJABIgAEVBNAiQkVXPfadVEgAgQASJABIgAEVCYAAlJhRGSASJABIgAESACRIAIqCYBEpKque+0aiJABIgAESACRIAIKEyAhKTCCMkAESACRIAIEAEiQARUkwAJSdXcd1o1ESACRIAIEAEiQAQUJkBCUmGEZIAIEAEiQASIABEgAqpJgISkau47rZoIEAEiQASIABEgAgoTICGpMEIyQASIABEgAkSACBAB1SRAQlI1951WTQSIABEgAkSACBABhQmQkFQYIRkgAkSACBABIkAEiIBqEiAhqZr7TqsmAkSACBABIkAEiIDCBEhIKoyQDBABIkAEiAARIAJEQDUJkJBUzX2nVRMBIkAEiAARIAJEQGECJCQVRkgGiAARIAJEgAgQASKgmgRISKrmvtOqiQARIAJEgAgQASKgMAESkgojJANEgAgQASJABIgAEVBNAiQkVXPfadVEgAgQASJABIgAEVCYAAlJhRGSASJABIgAESACRIAIqCYBEpKque+0aiJABIgAESACRIAIKEyAhKTCCMkAESACRIAIEAEiQARUkwAJSdXcd1o1ESACRIAIEAEiQAQUJkBCUmGEZIAIEAEiQASIABEgAqpJgISkau47rZoIEAEiQASIABEgAgoTICGpMEIyQASIABEgAkSACBAB1SRAQlI1951WTQSIABEgAkSACBABhQmQkFQYIRkgAkSACBABIkAEiIBqEiAhqZr7TqsmAkSACBABIkAEiIDCBEhIKoyQDBABIkAEiAARIAJEQDUJkJBUzX2nVRMBIkAEiAARIAJEQGECJCQVRkgGiAARIAJEgAgQASKgmgRISKrmvtOqiQARIAJEgAgQASKgMAESkgojJANEgAgQASJABIgAEVBNAiQkVXPfadVEgAgQASJABIgAEVCYAAlJhRGSASJABIgAESACRIAIqCYBEpKque+0aiJABIgAESACRIAIKEyAhKTCCMkAESACRIAIEAEiQARUkwAJSdXcd1o1ESACRIAIEAEiQAQUJkBCUmGEZIAIEAEiQASIABEgAqpJgISkau47rZoIEAEiQASIABEgAgoTICGpMEIyQASIABEgAkSACBAB1SRAQlI1951WTQSIABEgAkSACBABhQmQkFQYIRkgAkSACBABIkAEiIBqEiAhqZr7TqsmAkSACBABIkAEiIDCBEhIKoyQDBABIkAEiAARIAJEQDUJkJBUzX2nVRMBIkAEiAARIAJEQGECJCQVRkgGiAARIAJEgAgQASKgmgRISKrmvtOqiQARIAJEgAgQASKgMAESkgojJANEgAgQASJABIgAEVBNAiQkVXPfadVEgAgQASJABIgAEVCYAAlJhRGSASJABIgAESACRIAIqNBaQZ0AAAD9SURBVCYBEpKque+0aiJABIgAESACRIAIKEyAhKTCCMkAESACRIAIEAEiQARUkwAJSdXcd1o1ESACRIAIEAEiQAQUJkBCUmGEZIAIEAEiQASIABEgAqpJgISkau47rZoIEAEiQASIABEgAgoTICGpMEIyQASIABEgAkSACBAB1SRAQlI1951WTQSIABEgAkSACBABhQmQkFQYIRkgAkSACBABIkAEiIBqEiAhqZr7TqsmAkSACBABIkAEiIDCBEhIKoyQDBABIkAEiAARIAJEQDUJkJBUzX2nVRMBIkAEiAARIAJEQGECJCQVRkgGiAARIAJEgAgQASKgmgT+B3uZTdT81kBbAAAAAElFTkSuQmCC", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = px.pie(data, values='2020', \n", " names='Country Name', \n", " title=\"2020 GDP by Country's Region\", \n", " labels={'Country Name':'Region', \n", " '2020':'GDP', \n", " 'Number of Countries':'Number of Countries'},\n", " hover_data=['Number of Countries'])\n", "fig.show()" ] }, { "cell_type": "code", "execution_count": 10, "id": "bbadbe9e-e75d-4c3e-8759-c28dedbcb59b", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import plotly.express as px" ] }, { "cell_type": "code", "execution_count": 11, "id": "37762072-095c-4c11-a1e8-0a0dc92dfd9b", "metadata": {}, "outputs": [], "source": [ "data = pd.read_csv('Files/GDP_income.csv')" ] }, { "cell_type": "code", "execution_count": 12, "id": "8ada0f30-b971-4097-9072-f17b0649e5b1", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "customdata": [ [ 28 ], [ 54 ], [ 54 ], [ 80 ] ], "domain": { "x": [ 0, 1 ], "y": [ 0, 1 ] }, "hovertemplate": "Income Level=%{label}
GDP=%{value}
Number of Countries=%{customdata[0]}", "labels": [ "Low income", "Lower middle income", "Upper middle income", "High income" ], "legendgroup": "", "name": "", "showlegend": true, "type": "pie", "values": [ 481025000000, 7585550000000, 22848300000000, 53699800000000 ] } ], "layout": { "autosize": true, "legend": { "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "2020 GDP by Country's Income Level" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAFoCAYAAADkaRuEAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQd0lEUXht/dJCRAIPRepUtv0kF67yCIgHRBqiC9Skd6E0RApImAgDSld6RJb9IJvUNIQnr+cyd++Td1N8lustl95xyOJjtzZ+aZye67d+6dTxccHBwMFhIgARIgARIgARIgARKIIQEdhWQMibE6CZAACZAACZAACZCAIkAhyY1AAiRAAiRAAiRAAiQQKwIUkrHCxkYkQAIkQAIkQAIkQAIUktwDJEACJEACJEACJEACsSJAIRkrbGxEAiRAAiRAAiRAAiRAIck9QAIkQAIkQAIkQAIkECsCFJKxwsZGJEACJEACJEACJEACFJLcAyRAAiRAAiRAAiRAArEiQCEZK2xsRAIkQAIkQAIkQAIkQCHJPUACJEACJEACJEACJBArAhSSscLGRiRAAiRAAiRAAiRAAhSS3AMkQAIkQAIkQAIkQAKxIkAhGStsbEQCJEACJEACJEACJEAhyT1AAiRAAiRAAiRAAiQQKwIUkrHCxkYkQAIkQAIkQAIkQAIUktwDJEACJEACJEACJEACsSJAIRkrbGxEAiRAAiRAAiRAAiRAIck9QAIkQAIkQAIkQAIkECsCFJKxwsZGJEACJEACJEACJEACFJLcAyRAAiRAAiRAAiRAArEiQCEZK2xsRAIkQAIkQAIkQAIkQCHJPUACJEACJEACJEACJBArAhSSscLGRiRAAiRAAiRAAiRAAhSS3AMkQAIkQAIkQAIkQAKxIkAhGStsbEQCJEACJEACJEACJEAhyT1AAiRAAiRAAiRAAiQQKwIUkrHCxkYkQAIkQAIkQAIkQAIUktwDJEACJEACJEACJEACsSJAIRkrbGxEAiRAAiRAAiRAAiRAIck9QAIkQAIkQAIkQAIkECsCFJKxwsZGJEACJEACJEACJEACFJLcAyRAAiRAAiRAAiRAArEiQCEZK2xsRAIkQAIkQAIkQAIkQCHJPUACJEACJEACJEACJBArAhSSscLGRiRAAiRAAiRAAiRAAlYnJH18/PD81Rv4+wciU4Y0SJ7MJdpVevXGA17eH5Atcwbo9bpI6wYFBeP1Ww+8fuMBt5TJkS5tKjjo9VHaDQgIxIPHz1W9FMmTxmmXeHp9wIvX75AqZXKkSukKnS7yMcapkxg29vcPwKrf9yB39kyoXqlkDFvHvfpbD0+8eeeJdGnc4sw37qOJXwt7D/8D98fPUa/6J8iSMW38ds7erILA9j1/48279+jQqo5VjIeDIAESIIG4ELAaIXn20g1MmLMKN24/CDOf2lXLYES/9siQLlWY35+58C+GTPwRz168Dv19n87N0bNjkzBibcz05fjrwCl4efuE1kuTOiUGffUZmtWrHMamr58/xs/6BVv+Ohr6+/x5smPu+D7IkTWjyZxfvn6H2Us24PDJi0q8GpbGtSuiYa3yqFS2qBK+d+4/RuMvR4Spky1LemRMlxoVShdG03qVIxUcnzToGWZOIrgL5s2Bts1qokGNctGOVcRtuYa9lJiZOfZrk+cVl4oiHmcu/g27Dp6OsBafN62B5vWrILMVCKvjpy/jxNmr+KJFLWRMnyYuU4607ZCJi7Fj7wms/WE0in+cJ072B45bqHgaljnj+0D+Zuy5bNx+CGNn/IypI3tA/t6srbTvMwnnLt/ElYMrrG1oHA8JkAAJxJiA1QjJXzfvw8S5q1CxTGGUKpofnt4fsHX3cSXEShfLj1/mDg8ViCI2m3cdrSbbs0MTuLm5YuP2g7h97zEG9miNru0ahoIo/Gkn5dVsWreyEion/rmKY6cvqdeXzxqKcqUKhdbVPuTld/JhfOf+E6zdvFe13/vbTKRMkdwo4CMnL2LQdz8osVSySD6ULVFQed6ePn+F3YfP4OHjF8rGqZ2Lld1b9x6haaeRSrSUL/0xvL19IEJUPmi0smbBKJQokjdM35qQFKEZEBCAx09fhbYZ1LMNurStH+VY41tIXrt5H1/2n6KYfJw/Jyp/UgyuyVxw9eZ9CC/5fY/2jdG/W0ujfC1dYdEvf2DBz5ux/sexKFwgt9m7mzxvNdZs2ovtq6Yqj3Bcyt4j/0DYLl65FfLl47PG1VGjUknkzpE5LmYTfdv1Ww/gu1m/YPLw7mhat5LVzYdC0uqWhAMiARKIAwGrEZLnL9+Cg4MeRQt9FDodj/deqNC4t/p53/pZ6qhbyrSFv2Llhl2YPqZXqPft+cu3aNRxGJydk+Dg73NCj643bDuIRrUrIKmLc6jd+cs3qQ/fNk2qY8zAL9Xv5Yi8avN+EA/kukVj4JzESf1+7tLfsWT1Nkwc2lV5zaIrMt5abQYpYTSqfwd83rxmmOrBwcHYc/gMRk1bhgMb54QRkuIdnTSsW5i5r/59Dxau2KLqbfzpuzBeURGSMtcjm+eFthHxKR9SUjShGtl441NISlhB+z4TceHqbSXw+3dtAQcHh9BhyReFSfNWq7nZg5D8YcUWtaaybuIZj2uRI9LKTfsqD/eS6YPias4m2lNI2sQychIkQAKJhIDVCMmoeH09bDYOnbgAQ69cleb9lKfywt5lcHT8vygZPnmJ8mIaOza8dO0O2vYar7yfP80YrLretPMIRn+/DN/2aoPObf7vzbv74CkadRiGKuWKYfG0gdEuqxzdLl/3J9o1r4WR/dtHWVeOeVO6JldH25pHMryQ1BprHjLxyq6c9/8j8MiEpLTRjjsj82JqNjUhWffTsqhRqRTWbzuAfy7eQJ5cWdDps/po0SBEMIuHV+Yk3lDxGBoWsTFkwmLkzJ4JQ3t/HuVcJSaw/5j5KFIwN379YUyUcawiwjWP79PnrzFryXr8/c9Vtc7iIe72eUNULFsktB8RUCOnLFXrEl6wDx6/SHmBh/Zpp+pfuXEPC5dvRstG1fDo6Uts230MV2/cV18aBnRvhWrli6t6G3ccwk9rtiuvsRw7S0yrlDbNaqBcyUIYOHYhShbNp76AbNxxGJev30EK12RIl9pNeQZH9G+PbJnTh2EhNvcfOYvenZspD6d4uCfNXY3ze5bCyclR1ZW2S9fuwLnLt+Dp5Y2c2TKiQpki+KJ5TaPH61EJSR9fv9Dxyjx/Wf8XTp69puyJ3U5t64eJEw4MCsL6Pw5gz5EzuHz9LtKnTYVSaq411NpJMWVdDPsVz6h84ZO9JTzli4R4TP/YdQxy/CxffHJlz4ReHZuqL3uGRfbD/OWbcfzMZdx78FStlXyRk5CD6OKbxUZMhOShv8/jlw271Jzli1mJj/Oq9wBZAynyRfLfW+4Y9U3HCCEm8p6x9/AZfN2pWSgjY/bEJj2SieTTkcMkARIwiYBVC0nxZlVr2V+JiV1rp6vjO/mgKl23hzo2Xr1gZJhJasfjs8b1hoikqIoWQyWCacKQrqqaeInEW7Rs1hCUL/VxaFPxIhap3ll94O1YNTVaqHLcLsfu4hGVD2JTijEhKTZqtB6oYkHP7v4p1FMalZAcMXUp/vjrqBKdIj4jK5qQ1F4Tz1im9KmVuJKiHQkGBgbi01bfKP5/b1sY5mhfYzisT7tokwY07/Hc8X1Rq2ppo0gkyalltzHKqysiMWWKZDh4/Lz6WTy2WlyriJqanw0M41XWjAsbEQIblnynfiXH5z2HzgrtW8SUJF1p8bh/rpmmPKIrN+5WQlLmK+udLGmIF7v7F41QsUwRFVcqbf0DAkJjX4XdgG6tILG4vb5sConT1YrGz9fXD0e2zFdrJ6Lqj11HMX5wF1XtrvsTNOo4XP2/fLERYXr+ym213qbE+EUlJMOvsXi1RdiJYJJiaFv+zvqMmKO+sMl8ShXJh7sPnqgvEtoXKFPXxdjekj0pDMLvuaN/zEdqtxRqbMK/VY9xioGsQ+ECuVRcqRQJ2ZDQjeiKqUJSvvTJFyUp8n4hc9T+BuTEQOKyNVv9urbEVx3+/2VKmMnpgwj/w5vmwcUlifoSacye9EUhafRtgBVIgAQSEQGrFpJ//3MF3QZNV3F1miiQDxcRVp9WLIGFkweEQS3eSPFKjhrQAZ83C3usHPrhHhSEzgOmqg+zH6Z+E+qNkiSb37YewPol41A4f64wdsUDKmJAjoujKiIaitXsqj4gDY+bje0FU4SkxFxKwtCvi0ajWKGQBI3IhKR2vC+i69jWBaEetfBj0D7sZawTBndRLKXI8XO7rycowb5z9TTl+ZFjffHKjP6mI9o2rRFqShPN4QVm+L56DJ6pYlK3r5xiUuyeFqdqGLbw+NkrNOsc8qVh34bZKtM7NkJSPK4SoqAx1Ly9hjGlUcVIGgqkWlVKo2PruvgoZ2a89/RG2tRuaj2E5/71s0I9jQeOnUOfkXNVHG/fri0i3QpamIV8odE8wfLlZd/Rs8rTGT42NrwRY0JSBOSYb75Eg5rllTf41Llr6PzNtDAe9m17jmPYpCXKOz19dE8liqRIuMnR05eUODZ1XTRO0q/MqU61Miq2WUJMxs1cocI0Jg/rjppVSqnfa1/+Zn/XG3WqhXz5mzB7Jdb9sV+J3Ua1Kqh6H3x80ar7WOWdPLRprvI4R1VMEZIPn7xA3c8Hq/eWpTOGqC8WUiTRbuTUpWp9xdOuhdfIFwiJk9ZuhpD3j479JqN9y9oY3vcLmGqPQtLYOyJfJwESSGwErFZIPnv5Rn1wiHdCEm3KFC+g2N648xDNu4yKNONYMljlaFdi7cIfxWoLo8Woiffnx++/Df1g0I6Et66YrI54DUvDDsPUB9jF/cujPFaT8dZo9Y064vpt8djQ5pIJLkIsfJExiofKFCEpyR8icAyTB0S4SPnu28744OOHR09eYNXvu5XnTjLX+3aJXLhIm+hiJMVzJx68/RtmKe+biNPqrQYoJsJGiiY4Wzf+FOMGdYp2z9dtN1gdFZ/YscjoVT+aGDfsSzOuCTxN/MdGSEo8rBxLa0VL2jIMRTAmJOUYXMYQvmhJNHMn9IUITSkay93rZiBrpnSRctL6k/369ZdNQ0WoqW8kxoRk+Mx8EaniWRWPueZh18a569fpEY7mZRwxWZeo9paEFNRp+y2a1KmIKSN6hE7P/dEz1P9iaGg4iHj6itborL7MbPtlCvQG12UJq8WrtmLFnGEqiS2qYoqQlKP+739Yh2kjv1LvJVqRv5+KTXorb74WSiLCUgSm4fuQeKB/33EYm5ZNQIH/QgdMtUePpKm7m/VIgAQSAwGrFJKv375Hh76TlHgLn7Qi3qnabQapD2v50DYsmmdF4hNFHIQvv27Zh4lzVqnjslXzRyJNqpCjNClyXYgc10pSS6F8OcM01Y6Wo7uuQ+6eLF6rq/K4GHou33t9QPmGvSKMRRNWpghJ7bjaMO4x/PU/Wgfijf2sSfVo48iiE5JanKeh9zN83KX2IRoZq/AT7TJwmorNMyVLOSqxITa1WEttP5hDSGo2WjWqpgS5FGNCMqorkzRRqiW9iHgWES1evvmT+kX5XnDz7kM06zxKvS57Rx2hlyqE5vWqhHoGo3sjiamQFFsyLrmnVb4sSJH9LUe0UXncY7IuUe0tiQuu1KSPuvrq+1EhX4KkaElumsDU1iS6OYv4Cx9TaVjfFCGpnUBE1Y98idL4yNVkHfpORsuGVVVIgvcHH5St3zPMl8aY2KOQjG51+RoJkEBiI2B1QvLFq7foOuj7kKt8vvoMXT9vEIapHHGVqfeV+rCV63sMiyYUZ4zphfrh7lLUkhzE07Fy7vAISQzzl21S3o5V80eo64cMi4i21KlSqDjN6EqTTiPUuA9vnoe0Bhm58mGplf6j56skg5gISc3uP7uWwMU55NhR80gunDIAjg4OyJwhLTKkSx1lMovhuE0RkuJV1ZIstBADiU+U4z7JpJfkCUlqMlYksUTYSxiCdoQeVRvtTk3tA9uwnsRJ9h4xB4N7tUWnNvVidbQd3iOpeVvNISRlrJpA+Gvt99jy51G1n5bOHKzuA42uiHhatPIP/Ln/ZOgdm3JMLvvU2FU+5hCSspdckycLFU7hxxqTdYlqb2lHxOGFpDZ+TUhqfcneiyo8RZKAorvX1RQhqR3VS7JVZPHMcsuDFmctXtx6XwxRnnUR2xKyMHTSj0pUyl6VEhN7FJLG3jX4OgmQQGIiYFVCUoLdu307Xb1hRxfnqImov7f/EMbzpnnKwieaaF4mOTIV8RlZfJXER4pXIbwHVPPGRCZcwy+01r8WNxXZRuj+7XQcP3PFZCEpWb9jp/8c5qhNE5Lhr/8xdeNFJyQHjFmgrigyTH6Q48b67UM+SHt3aqYSkwxjGKPrV8uGD38XaPg28rSdwMAglK7XQx1byvFlmC8J/90zqsXSaaEE4Y9KNTaRJdvEREiGz/w35cokeWKJCIwvP6un7jWVLx9/rv7eJHGvzfX+w2dYvm6n8o5Lko8IneiKOYSkJmxO/7kYyZJGfJKUPG3K1HWJq5CMLpnO1P1tipDU3hNMEfrSr3YULuElkiwlXvaTOxbB9b8nX8XEHoWkqSvJeiRAAomBgNUISckmlWNQiVGKzKNoCFOOp8X7aJgsI0dn2hNiDm6cre4qlNgueVqOBPqLOJk3oW+Ul4prSTziaROvpHbXoWTxzvlpo7pv0jC+LrLF1cSNvDZ24JeQGMLwj0Q0VUjKh7cc1WsJCr/9OC7MBdZRZW2bsumi+rDX4tUii1HUPkjFvhzBalnIxvrz8w9QMa0SpiBJGz3aNwpzj6Ss99ylG1W2ssR1tu4xVmXObvl5IvLlzqbMS9hAi26jlbdXi+MT4VmidjcVS2co1iRB5Is+E8MkaGlZ26YIyagy/00RkiKC5C5S7SlKUYVYGDITT2uxQh+FuVNSrgOS+GBjx+JixxxCctaSDVi2dgfCZyZLfK885UfiQk1dl7gKSZmTJrQi82LLE63ES2vo8Q+/B00RkpqXXf7eV8wdjiT/XcUktmQO56/cQuVPioaalocEVGvRX51kyHtF+PjgmNijkDT2rsHXSYAEEhMBqxGSWiydvFFX/uT/9wVqMLNnyaA8NFJEaMgHmwiaLm0bwC1FcmzZdVRdbSJiRa5hkaLFNsn/y5GadixsuECSnZk3V1b1K80bJx+c8gxq8ZAu+3Wn6mfPupmhmZ3RLbAWpyl15ENKBKwkWrx+9x5nL94MfapO+KNtEURyBCrxV/KhJXPRBElk92KaQ0jKvFo2rKaSBSSkQESz9Gko0LW5StxqlWYhManhr7kxtuG1DFepJ1myVcsVR7JkLvj3tnvoXZHak220D2QZm3jjxEO2aedhlWUf/n7OTgOm4vT560roFC+cFxev3VZXBWn9hL/+xxQhqQlROVqW+0T9/PzVEX+JwnlNeqzkrB/Xqz0jxVhGu9SROy937j+psn8/zp9LPTde7lmU9f959lB8UvL/T14Kz1mOWK/fcldP4pH980XzWqhSvrj6whGd8A0fI/nOwwu124ZcpC9PSipdNL/aD+u3HUT+j7Kp+1NNXRdzCEnt71vmK2EH8pCCFy/f4vSF68oTaCw2VxOSstdyZYv49KCqFYqrRydKmIk8HUhipuXvQHva0s59J9TfYvgYbMNHUhrGEGvrYqo9Cklj7xh8nQRIIDERsBohqXnqooIXPiZPPtjkjdvwGdoiNMWrol3RoYmC6BbE8GhLvIAjpy1VV+1oRT5k5k/sh49yhs3kjs6mePZmLl6vPqQMi4gjefRi4zoV1QXX4q0UL5vEQBoWEdNZMqZF1fLF1Ae7PHc7fDEW1xbd+ISZdl2NXGtkyFCuf5GrYiIrcjWQZGzLNSgxfS62eHEkq9WQrfQhgq1F/SpoZ3D5tlx9I9c4GY5LYmXFY6ld4i1thd3XI2aHPnZS+EpcrYg58Vpp2fPy/Ozug2coL7EkImlFi5E0fMKRvPbzb3+q62e0x1lKIo7E3AozY88n1/oKbzOq9ZAvHiIEtb6knsyjf7dW6vLt6Ir2xcewjnb0r61xZOOVWwgCAgPDxPzKkbrEs2qPDxWbsg/li5l2LZEp6xJVv3JNUvlGXysBJ9f6aEVLwgl/Ib9cIj9l3powjwqVNvKFcFjvdtE+FUi7aigqdnIxujxKVTzIK9b/heW/7gyz1+Rv/qsOTVSGuWE5euoSvhoyM8wNBoavm2qPQjLabc0XSYAEEhkBqxGSseUmMYySgCOeB8On3MTWnrQTQXn/0TN1fBbdfXXG+pAg/Rev3uHVm3dKDJrjkXjG+ozp63J8KcJXr9MjV/aMYY6dDW2J0GjQfmik2fIx6VOYPH/1Fu/eeSKVWwp16XNkReIyHz99CW8fX3W5uPbIyvB1JXzB/dFzQKdDjizpoxx/TMYodWWcj568RPLkLqEXZZtiQ7sqRrsWxpQ2UkeSUZ6+eKNEpOwVc+1lU/vX6okYevL8tbqqSfZ/+NAMU9clpv1GVV+N59krdZoge8Xw8Zrm6kPWWk4B3r33UuJZ5h6XYm57cRkL25IACZCApQkkeiFpaUC0H0JAuyfR1OQEe+SmxchG9tQle+TBOZMACZAACdg+AQpJ21/jOM9QYujkkmY58lOXROt1cbZpiwa0K6RMzWi3RQacEwmQAAmQgH0RoJC0r/WO1WzlEvgT/1xVsWESq8oSOQGJIRTRLZdlG2YBkxcJkAAJkAAJ2CoBCklbXVnOiwRIgARIgARIgAQsTIBC0sKAaZ4ESIAESIAESIAEbJUAhaStriznRQIkQAIkQAIkQAIWJkAhaWHANE8CJEACJEACJEACtkqAQtJWV5bzIgESIAESIAESIAELE6CQtDBgmicBEiABEiABEiABWyVAIWmrK8t5kQAJkAAJkAAJkICFCVBIWhgwzZMACZAACZAACZCArRKgkLTVleW8SIAESIAESIAESMDCBCgkLQyY5kmABEiABEiABEjAVglQSNrqynJeJEACJEACJEACJGBhAhSSFgZM8yRAAiRAAiRAAiRgqwQoJG11ZTkvEiABEiABEiABErAwAQpJCwOmeRIgARIgARIgARKwVQIUkra6spwXCZAACZAACZAACViYAIWkhQHTPAmQAAmQAAmQAAnYKgEKSVtdWc6LBEiABEiABEiABCxMgELSwoBpngRIgARIgARIgARslQCFpK2uLOdFAiRAAiRAAiRAAhYmQCFpYcA0TwIkQAIkQAIkQAK2SoBC0lZXlvMiARIgARIgARIgAQsToJC0MGCaJwESIAESIAESIAFbJUAhaasry3mRAAmQAAmQAAmQgIUJUEhaGDDNkwAJkAAJkAAJkICtEqCQtNWV5bxIgARIgARIgARIwMIEKCQtDJjmSYAESIAESIAESMBWCVBI2urKcl4kQAIkQAIkQAIkYGECFJIWBkzzJEACJEACJEACJGCrBCgkbXVlOS8SIAESIAESIAESsDABCkkLA6Z5EiABEiABEiABErBVAhSStrqynBcJkAAJkAAJkAAJWJgAhaSFAdM8CZAACZAACZAACdgqAQpJW11ZzosESIAESIAESIAELEyAQtLCgGmeBEiABEiABEiABGyVAIWkra4s50UCJEACJEACJEACFiZAIWlhwDRPAiRAAiRAAiRAArZKgELSVleW8yIBEiABEiABEiABCxOgkLQwYJonARIgARIgARIgAVslQCFpqyvLeZEACZAACZAACZCAhQlQSFoYMM2TAAmQAAmQAAmQgK0SoJC01ZXlvEiABEiABEiABEjAwgQoJC0MmOZJgARIgARIgARIwFYJUEja6spyXiRAAiRAAiRAAiRgYQIUkhYGTPMkQAIkQAIkQAIkYKsEKCRtdWU5LxIgARIgARIgARKwMAEKSQsDpnkSIAESIAESIAESsFUCFJK2urKcFwkkMIGgZ48R9Pwxgl48RdCr5wh68wrB714j+P07BHu9R+CDuxFG+G3mA3BxAVycdUjqAjg7A85JgJQpdEjh+t9/UwApXQE3Nx0ypNXB1TWBJ8ruSYAESMCOCVBI2vHic+okYA4Cwe/eIODOvwi8dxNB7reVQAx0vx0r0yIkY1pEcKZPp1P/MqQDcmXXIU9uHVK56WJqivVJgARIgARiSIBCMobAWJ0E7J1A0GN3BFw9j4B/LyLg38sIevrQbEhiIySj6jxtGh3y5g4RlQXy6pA1M4Wl2RaKhkiABEjgPwIUktwKJEAC0RII9vNFwLkT8L9wCgGXTkOOrC1VzCkkw49RhGXxIjoUzKdD/o/0PBK31CLSLgmQgF0RoJC0q+XmZEnANALB3l7wP3UI/qePwP+fY0BQkGkN41jLkkLScGiOjkCh/DqUKqZHqeJ6JE8Wx4GzOQmQAAnYKQEKSTtdeE6bBCIj4H/yEPyO74X/3zGPVTQH0fgSkoZjTZkCoYLy4wI8/jbHOtIGCZCA/RCgkLSfteZMSSBSAhLz6HdwJ3y2rE5wQgkhJA0nnTuHDp+U1qNcaT1EYLKQAAmQAAlET4BCkjuEBOyUgP/5E/DbtTnk6NpKSkILSQ2DiEgRk/IvVw56Ka1ke3AYJEACVkiAQtIKF4VDIgFLEvA7vAu+f/2OwFtXLdlNrGxbi5A0HLzEUFb6RK8SdVhIwNIEPL2A/UcCY9RNk3oOMarPyiRgTgIUkuakSVskYMUE/PZvh8/vK9QF4dZarFFIaqxESFat4EBBaa2bx0bGJUJywAh/k2fjmhyYM9nJ5PqxqfjBxxdJnBzh4BC9YH3n4YXjZy6jfo1yJnUTEBCIgMBAuMhTB1gSLQEKyUS7dBw4CZhGwO/oHvj+sRqB92N3SbhpvZinljULSQpK86wxrURPIL6FZI3WAzGgeys0qVMxdGA795/ElPlrcGTzPPj4+KF0vR5YMKk/qlcqGe3gL127g7a9xuPygZ+h0xn34C/4eTP2HT2LzcsmcFskYgIUkol48Th0EoiOQMClM8oDKZeHJ5aSGISkxrJsST3qVNcjd07jH5iJhT/HmfAErEJI7juBKQvWKiEZFBSMa7fuI0eWDEjhGv09WTEVks9fvsV7T2/kyZUl4cFzBLGUtoh0AAAgAElEQVQmQCEZa3RsSALWSUCOrn3WL4Xfob+sc4DRjCoxCUmZhl4H1KkhgtKBWd6JbrdZ54CtTUgKpfZ9JmFk//YolC8n3nt9wPQffsVfB04pgCUK50OBPNkwqGcbaEJyyNdtsXbLPvV617YN8FmT6pHC3rnvBP65eAOjv+mIW/ceYfjkJWhUq0KkbYODg/H7zsNYs2kvHj15gYJ5c2Bgj89QokheHDx+HrOWrMfte49Rulh+jBrQEfk/yqb6bPf1BFQtXxy7Dp1W7ZrWray8rzN/XI+rN+6hce2K6Nu1BVKldIX0sX7bQazcsAsent5oUb8K2jWviYzp01jnZrGSUVFIWslCcBgkYA4Cvtt+xYdffwQCAsxhLt5tJDYhqQFKn1anvJPVq+jjnRk7tC0CCSEkC+bJjkL5c4aCvH7LHRev3VEeSSmFP+2ElfNGKJEmYu/s5Zvo27kFcmbLiIUrtsA5iRPmTugbKiRrVCqFz5p8ioePX2Di3FX4e9tCpEyRPMJCrdy4GwePn8PyWUONtt225ziGTVqCfl1bomKZwjh+5gpSuiZD2ZIF0bTTSPRo3xhVyhVVQvPU+evY/et0JHVxVmPPnyc7enVsguBgYOC4hUiezAXf9myD7FkzYOTUZejTuTlaNKgCEbbjZq7AuG87I3f2TFi8civcUibH+MFdbGuTmXk2FJJmBkpzJJAQBAJuXIHP6oUIuH4xIbo3W5+JVUhqACTDu1kDPbJk4nG32TaFnRlKCCGZJWNa5M6RKZT0XfenuP/oWQQhWbhALpSu2wNTRvQIjalc9MsfEOFpKCQNYySrNO+HCYO74NOKJUwSklG1Fc+iCFfp27DMX7YJ2/f9jV1rp6tfv37jAelTi+kUIblmwSjluZTSpud3aFirAjq2qqN+nr5onWojdsXzKn20b1lbvXbtpjumLlijhLCxRCM726Zhpkshac+rz7nbBAGfDcsh/2yhJHYhKWsgd1A2beCAahXpnbSFPRnfc0gIIRkh2cYgRlLmr3kkM6ZPjbqfD8b2VVOVx06KMSHZsMMw9O7cHA0iyeSOzCNpKCQN237SoCeG9m6Hlg2rhlkS8VJKXo+hwJQEou5fNMTnzWqqsRsKyS4Dp+HTCiXQsXVdZeeHFVtw485DzBnfRwnQZEmdkT5NqjB9iEhOmzplfG+FRNMfhWSiWSoOlATCEgh0vw3vH79H4M0rNoPGFoSkthgVyurRtIEe6dLQO2kzGzQeJmLNQrJkkXwo36gXpo/uiWoVQjyM8SUkm3cdjU9KFMTwvl+EWQXxKMoxt5b57eXtAxGds8b1Rt1Py0YQkt2/nY4q5YpFKiRb9xiLxnUqhXor42G5baILCkmbWEZOwt4I+O3dCu+fZgDBQTY1dVsSkrIwEjvZorEekuHNQgKmELBmISkxkiOnLsX5K7fQrV1DlXEtV/hUKF04yqNtc3kkxXP46x/7MXFoV1QsXRinz1+H9wdfuLomRdeB32PGmF6oVLYIxMsp4vbQprlIl8YtRkLypzXbof7NGIwiBXLh0dOX2LDtoEokYomaAIUkdwcJJDIC3kumw2/vH4ls1KYN19aEpDbrejX1aNHYQWV5s5BAdASsQkga3CMpY5Xj4VXzR6BU0fx49vINpi1Yi39vP0C+3NlUprOzsxO+H9UTl6/fVTGI4Y+nJZklskvKV23cjQP/JdsYayv3WU6YsxJb/jqq8EnCzLSRX6m7LRev2gqJldR+P3VkD0jCjzZ2w6Pt8B5JEZ037z5UHkw//wDMXrJBZW1rpWyJglgxZxg3bTQEKCS5PUggkRAIeuwOr9ljEHj/ViIZccyHaatCUkgUzKdDy8YOvHcy5tvCrlrEt5CMKdzAwMDQxBO5Y7Ln0FkoWSQven3ZNKamYlVfxN7bd55ImyYlHPT/9/T7+Prh5et3yJwhTZwTY2SOL994wM01OVxc+NQdYwtFIWmMEF8nASsg4P/PMXhNG2oFI7HsEGxZSAo5F2egbQsHVC7Po27L7qTEa93an7W9bO0ObN93QiXb3H3wVIm3TUvHI33asAkqiXcFOPKYEqCQjCkx1ieBeCbg+9cmfFg+K557TZjubF1IalQb1ZVrgqJ/bnHCrAB7JYHoCTx78Vrd0+jp+UGJx/KlP4Zr8qTEZscEKCTtePE5desn4PPrEvhsXmn9AzXTCO1FSAouyeru2p5i0kxbh2ZIgAQSiACFZAKBZ7ckYIyALSfVRDV3exKSwqDoxzr0/8rR2Fbg6yRAAiRgtQQoJK12aTgweybgPXcc/I7ttTsE9iYkZYEL5NVhcF+KSbvb7JwwCdgIAQpJG1lITsN2CHhNHw7/00dsZ0IxmIk9CkmKyRhsEFYlARKwOgIUkla3JByQPROQzGzJ0LbXYq9CkmLSXnc8500CiZ8AhWTiX0POwEYI2LMnUltCexaSFJM28occx2kEv38H379+j5EVl9ZdYlSflUnAnAQoJM1Jk7ZIIJYE7DUmMjwuexeSwqN4ER36dmfMZCz/lBJ9MxGS77o2NHkeuhRucFu2w+T6tlwxMCgIfn7+SCoXtkZSTp69hgzpU6s7MMOXV288cPbSDdSuWka9tPvQaZQpVgBpUqeMETJjY4iRsURSmUIykSwUh2m7BOwxOzuq1aSQDCFTq5peXVzOYn8E4lNIBgQEonitrvhl7nCUKV4gFPaK3/7CnwdO4rfFYxPVAvz9zxV0GzQdx7YuQKqUrhHG3rHfZNSr/gnaNa8V4TV5dnenAVNx5eAK9Zo8FnLlvBGQ54vHpBgbQ0xsJZa6FJKJZaU4Tpsk4LNuCXw22c89kcYWkULy/4Sa1NejST2KSWN7xtZetwYh+fNvf+KvA6cSnZD09PqA+4+eoWCe7JE+JjE+hKSxMdjafpX5UEja4qpyTomCgO+uTfiwzD6eWGPqglBIhiVFMWnqzrGdetYmJG/de4Thk5egZpXSWL/1IDy9vNH9i0bqn5RpC9aq/96+/wTHTl9CySL5MGVEd2TPkkH9/syFfzF90TrcdX+CWlXLoF2zmihSMDfE7sipSzG8zxdYuXEXnr98i9ULRkZYSLGvd9Dj9r3HOHLyIiqWKYwhvT/HsrU7sf/YWZQtURD9u7ZE/jzZcef+Ywyf8hPW/jBaPYf7wePnmDB7lRpXruyZ8OLVWwzo3kp5JIODg7Fywy78smE35Gk90v7G7QeReiR9fPwwd+lG9WjIlK7JVPuWDapG+hzu8GNo9/UEVKtQAnuPnMH9h8/Qpkl19O7UXLWVMfy+8zDWbNqLR09eoGDeHBjY4zOUKJIXB4+fx6wl69W8xSs6akBH5P8oWyhzU5lEtwbm+quhkDQXSdohgRgQ8P/nOLymDYlBC/uoSiEZcZ3btXJAjSp8Nrd9/AUA1iYkL127g7a9xqNhrfJoXLsiTp27huXr/sSfa6YhR9aM+HrYbFz69y76dm4Ot5SuWLhiM4oW/AiThnVTQq5euyEY1LMNqpYvhl0HT+P3HYexb/1MXL5+V9nNmD4NWjUUUeaMLm3rR1hmsX/m4r/4pkdrfJQjC8bMWI6Hj1+gZ4cmKFeqEH7ZsEuJuykjeuDKjXv4rMc4XNy3DMHBQNPOI5HaLQW6t2+EJE6OGDl1Gbq1a6CE4M79JzF4/CL06dxcjW33oTNYunZHpEJy3MwVSmSKCJXy3axf0LNjE8UjfDEcg4ODgzoiz5MrC3p1bIpkSZ0xeMJiTB/TC9XKF8e2PccxbNIS9OvaUgnk42euqLmULVkQTTuNRI/2jVGlXFElNOWxlLt/na7iP2PCJLo10Ol0ZvmzopA0C0YaIQHTCQQ9dofHgHamN7CjmhSSERfbwQEY0NMRhfKb503fjrZTopyqtQrJywd+hiY8GnYYhm7tGqJ5/SpK1JQqll/9LEWSVCbMWYXDm+Zi0S9/YMe+E5gxppd6zc8/AOKh2/jTd5D4TBGSp3YuRvJkLlGuVXj7c5f+jht3HmDh5AGqjXjuRk9fjiOb54URkuev3IYcZW9fNTU0ucbwaLvLwGnImC61EqBSooqRLJw/F0rX64GR/dsrb6uUTTuP4PnLN5g7oa9JQnLNglHKyyhFhGPaNCkxuFdbxSJntoyhY9CMzV+2Cdv3/Y1da6erX71+44EqzfthwaT+qF6pZATm0TH5YcWWKNegUL6cZvkboZA0C0YaIQHTCXiO6omAG5dNb2BHNSkkI1/sbFl0SkymcrOjzWCnU41PISkZxsVqdMGyWUNQvtTHocTFMycCTY6aNY+koZAcOG4h0qRKiVEDOkQQNTfuPETzLqNwYOMczF6yHkdPX0bOrBnDrGbvzs3gmiypEpKGdiNb8vBCcsnqbbhw9XaokJRMbBGFkiRj6A3cse8kJs5ZqYSqVgyFpAiz/t1aolXDatEKScnabtRhmDqOd3L8/20KGdOnxsyxX8dYSE6auxqBgYEYM/BLfNKgJ4b2boeWDauGsSNiU5yFmsiVF2u0HojuXzTE581qRmAeHRMJS4hqDSqULmyWvzIKSbNgpBESMI0AM7Sj50QhGTWfsiX1+KoTk29M+0tLvLXiU0hqAqVvl+bKu6gVOcr1/uCD70f1jFRIiqj5rMmn6ng5vNDTjmvP7VmKBcs34fb9x6Giz3BVIhOopgjJn9Zsx/krt4wKyeu33PHZV9/h9J+LkSxpiMfTUEj2HjFHxST27dIiWiGZL3dWVGjcG+uXjIN4J42VyI62DT2ShkKyedfR+KREQQzv+0UYsxJTKsfcm5dNUL/38vZRonPWuN6o+2nZCMyjYzLrx/VRroGxuZj6OoWkqaRYjwTiSMBv71Z4L/k+jlZsuzmFZPTry+Qb297/Mrv4FpKT563GoRMXlDDLlS2TioHsPngGpo/uiQY1y4cKyU3LJiB92lTYtPMwZi/ZoESOJKiIkEyX1g3f9myjBIvYk9hJ8dadu3wT7ftMUp61+tU/wbv3Xthz6IyKAfzwwTdWHklThaSwFAHYtllNfNGiFi5eva2Se7Rkm18378OKDX9h8rDuSJ/WDQt+3owde09EGiPZ/dvp8PXzV/PIkDYVrt26j7MXb6JTm3oRNmRMhKQcO//6x35MHNoVFUsXVsfr3h984eqaFF0Hfq9CAiqVLYKVG3erMIFDm+YiXRq3GAnJ6NYgb66sZvmDopA0C0YaIYHoCQS638b7IZ2BoCCiioYAhWT020PiJYf2c8RHuRgvaat/SPEtJD3ee6kkFMmA1ookvXzT4zPo9bpQISlHvBKrJ0WEj+bB1BI/xGsmRRJgxJMpgkeKxBNOXbBGedWkSPb0oqnfwOO9N9r0/M6ko23JWu76XwxmeCEpwrfPyLnqCPvqjfto3WOsSraRRJdft+zDxDmrVL8iet95eKF7u4b4vHlNyAXk3b6drpJopFQqW1RldxveI7lq/giUKpofz16+wXczVijBrRXxxvbtGuLNNCzhxyDJNuE9kkFBQRj9TUdINviEOSux5a+jyoTEik4b+ZWKg1y8aiskVlL7/dSRPVCjUin1szA3lUl0ayCC3xyFQtIcFGmDBIwQ8BzXBwFXz5OTEQIUksa3CJ98Y5xRYq4R30JSYyVC7/VbD2RIlxrOSZxCEWpH0CLORIi5ubmqq3W0oh1ti9dPEmhSuCaLgF+uuRHhJpnTKVMkj9flkSP6914fVGJN+CLjevr8NVKnSgEX5yRGx+Xj66e8qulSp4z0nkqjBqKoIElIb995qiQcQ7bS38vX75A5Q5o492fJNaCQjO3Ksx0JmEjAZ8NyyD8W4wQoJI0zkhq8Esg0TomxlrU9a9tYLGP4GMnEyJxjjhsBCsm48WNrEoiWQMCNK/Ac9RUpmUiAQtI0UJK9PaSfIzKk4xG3acRYK7YEXr99j8MnLqBZvcqRmjh++rI6xpajYxb7JEAhaZ/rzlnHEwHPMV8j4PrFeOot8XdDIWn6GlYqp0fndsziNp0Ya5IACViCAIWkJajSJgkA8N32Kz6sWkgWMSBAIRkDWIC6DkiuBWIhARIggYQiQCGZUOTZr00TCHrxFB69Qx6nxWI6AQpJ01lJTbmoXLK4kyaNWTvWJgESIAFzEaCQNBdJ2iEBAwLeCybC7/BfZBJDAhSSMQQGoF5NPVo14RF3zMmxBQmQgDkIUEiagyJtkIABgYBLZ+A5IeQ5sCwxI0AhGTNeWu1Bvfks7tiRYysSIIG4EqCQjCtBtieBcAQ8x/ZBwDXeGRmbjUEhGRtqAO+WjB03a2z1MsAHC59fjtHQxmYpE6P6rEwC5iRAIWlOmrRl9wT8ju6G97zxds8htgAoJGNLDujb3VEJSpbETUCEZPoLP5s8iXSOLnhRvLPJ9W25YmBQEPz8/JHUxTnSad68+xDvPb3V02rCl6CgYOw6eEo9klAuTd996DTKFCsAeaJPTIqxMcTEVmKpSyGZWFaK40wUBDz6tUHQ00eJYqzWOEgKydivCr2SsWdnTS3jW0jWaD1QPX+6SZ2K1oQhVmP5+58r6DZoOo5tXYBUKV0j2JDnVV+/5Y65E/pGeM3fPwAlanfDxp++Q6F8OSGPNlw5b4R6FGFMirExxMRWYqlLIZlYVorjtHoCfvu3w3vxVKsfpzUPkEIybqtDr2Tc+FlDawrJ2K+Cp9cH3H/0DAXzZI/0kYLxISSNjSH2s7PelhSS1rs2HFkiI/B+YAcEPrybyEZtXcOlkIzbetArGTd+1tDaWoSkHNEuW7sD6/44AE8vb9SoVArD+34Bt5TJsW3PccgTbaaM6KGQzVz8mzoC7tymvvq504CpGNCtFUoUyYszF/7F9EXrcNf9CWpVLYN2zWqiSMHcuHXvEUZOXYrhfb7Ayo278PzlW6xeMDLCEkxbsBZ6Bz1u33uMIycvomKZwhjS+3MsW7sT+4+dRdkSBdG/a0v1ZJ079x9j+JSfsPaH0eqZ1fKc7e9/WIed+07A2TkJkiV1RsE8OUI9kuI9nDJ/jbJd/OM8uHD1dqQeSXlO9fptB7Fywy54eHqjRf0qaNe8JjKmTxNhvOHH0O7rCahWoQT2HjmD+w+foU2T6ujdqTlcXEKe7X320g3M+Wmj8pRmzZweHVrWQYsGVdRcJs5dhZNnryFPrizo26UFalcNiYWNCROpH9UamGu/U0iaiyTt2DUBuepHrvxJiBII4GWQDql0wXCORYjcu2Ad3HTBCTH0CH1SSMZ9Gb7p5YjCBWOxEeLeNS2YgYC1CMkN2w4qATi4V1tkypAG85b9jkzp02L+pH5K/HToOxn//LUEOr0Opep0V6Jq3/qZePTkJeq2G6yOlyUesV67IRjUsw2qli+GXQdP4/cdh1W9y9fvom2v8apdq4ZV4eLijC5tQ4SoYZFneZ+5+C++6dEaH+XIgjEzluPh4xfo2aEJypUqhF827EJK12RK1F65cQ+f9RiHi/uWKY/k+Fm/4ODfF9Cnc3Mlxn5cuRVOTo5KSIoNGac8+rF1o0/x+PkrDB6/KFIhKUJ03MwVGPdtZ+TOngmLV25Vgnr84C4Rxht+DHJELn336thUCdnBExZj+pheqFa+ONwfPUP9L4aiVaNqaF6vCu49fIpzl28qwd6g/TAULZgbHVvXxcmzV7FwxZbQscWEyYPHz6NcA53OPO8TFJJm+MOnCRJ4P6I7Am9di3cQqz44YauPY2i/hRyDMMjVTwlD90A9BnlEDDqXGwfXpf6gxOdET2c8D9IhtS4YI1x9kdUhRFAu8k4Cv2Cgf3K/eJ0ThWTccZcvo0e3DrxXMu4kE8aCtQhJ8aQVzJsDYwZ+qUDsO3oW/UbNUwIxWVIXlKzdTXkQ5Sj3x1XbcOPOA/wydzjcHz3H4lVbsXnZBPywYgt27DuBGWN6KRt+/gEQuxKHGBAQqITkqZ2LkTyZS5SwRTSVKpYf3do1VHXmLv1d9bVwcsgVawePn8fo6ctxZPO8MEJSkmck5nHCkK7Kw6fe1wxiJGXMqzftweFNcyGCKroYyfZ9JiFntoxo37K2snPtpjumLliDv7ctjHCEHpmQXLNglPLOShk2aQnSpkmpBPr85ZuUp1MbgwZBvL3dB8/A/g2zQr2eTTqNQOVPimHI120REybRrYHEgpqjUEiagyJt2DUB/3N/w2vK4ARh8IePoxJ/RRwD8ShIj9HvndHYOQCfJ/VHAIDHgWEfn7fFxxHn/fVYnsoH0vYffweMT+GLyZ5JkMshGO2S+uNVkA6937lgvpsP0uvj11NJIWmebTRmsCNyZDOPt8E8I6IVUwlYi5Cs0rwfBvZojeb1Q0TYk2evUKvNICUQ5Ri5x+CZqFDmYzx49Fz9fPPOQ3W87eXtA0cHPQZ+9RmGT16Co6cvI2fWjGGm37tzM7gmS6qE5OUDPyshF1UJL5qWrN6mjqA1ISlHv10GTsOVgyvCCMknz14rj+P2lVOQO0fmCEJy9PfL4Ovnj+9H9VSvRSckhYV4E9OnSRVmmOLZTBsuq9uYkJw0dzUCAwOVQBdRKWXqyJAQAa2I13bO0o1KHGtl7IyflYd31rjeEYRkdEyiW4MKpQubui2jrUchaRaMNGLPBLymD4f/6SNWgWCqZxLlYZyV0jfCeLyCdej61gWdkvmjnnMApG46fTC6JfPH6g9OuBmgx3cpfDHPKwnEn9U7nr2RMmAKSfNso1qf6tG2Ob2S5qEZv1asRUg27zoalcsWUcfSUrRs5AMb5yBDulT4+bc/VfyeHHNvWzklJKZvziq4Jk+qjpKrlCuGWT+ux+37j0NFnyHJS9fuxEpI/rRmO85fuWVUSEpfxWp2xdKZg6EJJkOPpMQ7/nXglIqnNCYkW/cYi8Z1KqFjqzpGN0NMhKTElu4/dg47VoVN0hQva+8Rc3B860J1hC5FPLmFC+TGyP7tIwjJ6JhEtwZGJ2NiBQpJE0GxGglERiDo8X14DPjCKuCIB7Lz26So4BSIryMRgT97O+GInwN+SuWjhOJm5Z10UOJRRGUOh2DUdA5A/3cuWOTmg5T6YOXRzO4QFG/zo5A0D+rkyYCxQx2RJhW9kuYhGn9WEkJItm1aHbWqlA6dpMQrbv7ziIpnnP1db2RKnxrjZ6/Ey9fvsG7RGOVBlBjHNj2/U0kqIsbkqLpik97KI3li+w9I4ZpMxfvJsbDEL9av/gnevffCnkNnULZkQXz44GtRISkxkv1Hz1eexsG9P4fHey8V55gjSwYVI/nv7Qdo0XU0po38Cp+ULKQSiER0RXb9jwg19W/GYBQpkAuPnr6ExJBqIttwd8RESGre1FEDOqBp3Up4/OyVSmJqUrcS6rT9Fm2b1lBH+qfOX1dz+WHqNyq2MryXNjohGd0a5M2V1Swbm0LSLBhpxF4JfFizGL5/rE7w6csB9DTPJEoYLnTzQdpwR9Kvg3T46p0L+iT3Q7Ukkp4DPAvSYex7Z3wIBpwAjE3hh3UfHJFKH4xKSQIxxdMZTghGEh0wLYUv3OLhmJtC0nxb6bNmDqhTPWxog/ms05KlCCSEkHz24nWY6UhmtIitUdOWqQQZKbmyZ8L8if3wUc4s6mc5nq3QuLfKJu7wn6duzPTlSqD9tnhsqL1NO4+oeEIRmJqdRVO/gcd7byVETTnalrscu/4XIxleNJ06dw19Rs5VsZZXb9yHeA+1ZJvzl2+hx5AZqm+JwxThlD5tKjU3iaEcNvlH7Nh7Qo3r04olVLzlpmUTUCBPdnWP5Kr5I9Tl5RLbOXvJBpW1rRXJFl8xZ1iEbRB+DGLHMEZSjraDgoIw+puOqq3YnLbw11A7PTs2UUwPnbigkn80btrvpaIISVOZSP2o1iBHuJCD2O5pCsnYkmM7EgDg8VUzBL15meAslno7Ya+vI8am8IUk3IQvc72S4FqAXnkaw/uongTqkNkhGA8DdfjWwwU/pvLBKm8nuOhCjr0HeLigibM/ajiHCFBLFgpJ89HNm1uHYQP+n4hlPsu0ZEkC8S0kjc1FPHkffP2QMV1qY1WjfF2uz3n1xgNJnBzVU2Pis4in9NnLNyrzXK4ECl9kXE6ODiaNS8TzyzcecHNNHnp9jznmIlctvXrtgVRuroqRVuT3T5+/RtpUKePcnyXXgELSHLuANuySgP/JQ/CaGfHes/iEIZJxgVcSHPcLOaIuEImIfBSoU2LwW1c/lHOKWgxO8kyCbA7B+DKpP/p5uKC+c4D6N90ziTrm/iqZv8WnRiFpXsSD+zqiQF4eb5uXqmWt8VnbluVL6+YnQCFpfqa0aCcEvGaPgf/f+xN0tpJtfc7fAQOT+yGHQSxjRodgaN9r5YofuepnTsqQo6XIyr1APYZ5OGNZKh8k1wWr63+k9Ezmh37vXNA6qT+q/nckbskJU0ial27Nqnp83pJJN+alSmskQAKGBCgkuR9IIBYEgj944d2XdWPR0rxNvnzrAu/giB6nmSl9lbC8FaDH8PfOGO3qi2JOUSfNjH/vjHyOQeraICk3AvSY4ZUEnsE6ZNUHqfhJ13i4tJxC0rz7I3UqHSaMcIRLxOtEzdsRrZEACdgtAQpJu116TjwuBPwO/gnvHybFxUSiaPtWnpgTD0k2GgwKSfNvi+4dHVCuNJNuzE+WFkmABIQAhST3AQnEgoDX98Pgf+ZoLFqySXQEKCTNvz8qfqJHly94vG1+srRIAiRAIck9QAKxIeDvh7cdagNBls9ijs3wEnMbCknzr55bSmDKaCckCQl7ZSEBEiABsxKgR9KsOGnMHgj4nzoMrxkj7GGq8T5HCknLIO/dzQEli/J42zJ0aZUE7JsAhaR9rz9nHwsC3j9Nh9+eP2LRkk2MEaCQNEYodq9/WlmP9q15vB07evHbytcTuL0/ZqcdHzfh2sbvKrE3QwIUktwPJBBDAu+6N0bwuzcxbMXqphCgkDSFUszrpE+nw5TRvJw85uTiv4UIyW0DTL+z1dkVaDxHnk2VOMoHH1916bY8wpDFNghQSNrGOnIW8UQg6LE7PAa0i+jjOZYAACAASURBVKfe7K8bCknLrfnwbxyRJxcvJ7ccYfNYjm8hWaP1QAzo3gpN6lQ0zwSiseLj44fS9XpgwaT+qF6ppMX7YwfxQ4BCMn44sxcbIeC3dyu8l3xvI7OxvmlQSFpuTdo0d0DtTxknaTnC5rFsy0JSnm997dZ95MiSASlck5kHGK0kOAEKyQRfAg4gMRHwXjgRfof+SkxDTlRjpZC03HKVKaFHz848TrQcYfNYthYhKc95XrZ2B9b9cQCeXt6oUakUhvf9Am4pk2PbnuM4fvoypozooSY9c/FvSJM6JTq3qa9+7jRgKgZ0a4USRfJGgNK+zySM7N8ehfLlxLQFa+Ho6IDb9x7jzMV/8WnFEujXpSWyZUmv2p29dANzftqI67fckTVzenRoWQctGlTBnfuPMXHuKpw8ew15cmVB3y4tULtqGdVGbOod9MrmkZMXUbFMYQzp/TmWrd2J/cfOomyJgujftSXy58mu6j9+9gpT5q3ByXNXUfzjPGjd+FPUqVbWPItpJ1YoJO1koTlN8xDw6P85gp48MI8xWolAgELScptCnnIz/TvGSVqOsHksW4uQ3LDtIKYvWofBvdoiU4Y0mLfsd2RKnxbzJ/VTAq9D38n4568l0Ol1KFWnOzKmT4N962fi0ZOXqNtuMI5tXYBUKV0jQCn8aSesnDcCpYvlx9fDZisBKUfr+XJnw4zFv6FcqY8xsEdruD96hvpfDEWrRtXQvF4V3Hv4FOcu31RitkH7YShaMDc6tq6Lk2evYuGKLdj403dKnGo2v+nRGh/lyIIxM5bj4eMX6NmhCcqVKoRfNuxCStdkSgQHBASiaeeRKF44Lzq0rI17D57i2/GLsHvdDGTNlM48C2oHVigk7WCROUXzEJAEG0m0YbEcAQpJy7EVy5JwI4k3LNZLwFqEZLuvJ6Bg3hwYM/BLBWvf0bPoN2qeEojJkrqgZO1uWL1gJDy9PuDHVdtw484D/DJ3ONwfPcfiVVuxedmESCGHF5KliuVHt3YNVd1NO49g1e+7Vdv5yzdh/baDOLxpLnS6/+9Z8YR2HzwD+zfMUuJVSpNOI1D5k2IY8nVbJSQNbc5d+rsa28LJA1Tdg8fPY/T05TiyeZ7yaHYZOA0r5g6Da7Kk6vVxM1egad1KaNe8lvVuEisbGYWklS0Ih2O9BPzPnYDXlG+td4A2MDIKScsu4ledHFC2JOMkLUs5btatRUhWad5PeQab16+iJvTk2SvUajNIiTw5Fu4xeCYqlPkYDx49Vz/fvPNQHW97efvA0UGPgV99FmMhuevgacxash671k7HsElLVPupI0OOz7Xy+47DmLN0oxKCWhk742e89/TGrHG9IwjJJau34cLV26FCUhOPVw6uUMJ19PfLULJIvjB91KhcCl3ahhzTsxgnQCFpnBFrkIAi4LN5FXx+/ZE0LEiAQtKCcAE0qqtHswaMk7Qs5bhZtxYh2bzraFQuWwSDerZRE/r7nyvoNmg6DmycgwzpUuHn3/5UHj055t62ckpI3OKcVXBNnhR9OjdHlXLF4iQkJe5y/7Fz2LFqahg74lHsPWIOjm9dqOI1pYj3tHCB3Cr2MrxH8qc123H+yq1IheShExcwePwiZUtiNVliR4BCMnbc2MoOCXjPHQe/Y3vtcObxN2UKScuyLllMj95d+YFpWcpxs54QQrJt0+qoVaV06MBdXJyx+c8jEO/f7O96I1P61Bg/eyVevn6HdYvGqKPmy9fvok3P71SCytofRqt4w4pNeiuP5IntP0SZlR3d0bahR1LzHI4a0EEdNUtSjBxrN6lbCXXafou2TWuoI/FT56+j/+j5+GHqN6hWvniMhKTHey/lZW1atzL6dWsJOUA/ff46AgIDQ5N34raa9tGaQtI+1pmzNAOB94O/ROD922awRBNREaCQtOzeyJBOh8m8mNyykONoPSGE5LMXr8OMWjKd507oi1HTlkHEnZRc2TNh/sR++ChnFvVzYGAgKjTurTKmO7Sqo343Zvpy/Hv7AX5bPDZKCiIkV80fgVJFQ5JtJOmm638xkrsPncbMH0OOtqWs3LAL0xb+GmqrZ8cmqj/NkyiiVYr2e/n/8DbDeyRPnbuGPiPn4tTOxart+cu3VEKOZHlLSZ7MRSXi1KxcKo4raT/NKSTtZ6050zgSePtZ5ThaYHNjBCgkjRGK++uLZjjBKfE8CCXuE05kFuJbSBrDI167D75+yJgutbGqFnldriF69doDqdxc1RNxtCK/f/r8NdKmSgkXlyRx7lvm6R8QiDSpUoRJ7omzYTswQCFpB4vMKcadQNDzx/DoE3nweNyt04JGgELS8nth1CBH5MrBzG3Lk45dD3zWduy4sVXCEaCQTDj27DkREQi4dAaeE0Kuj2CxHAEKScux1Sx/3dUBpYoxc9vypNkDCdgHAQpJ+1hnzjKOBPwObIf3orDZg3E0yeaREKCQtPy2aP+ZAz6tRCFpedLsgQTsgwCFpH2sM2cZRwI+G3+Gz/plcbTC5sYIUEgaIxT315vU16NJPWZux50kLZAACQgBCknuAxIwgYD3kunw2/uHCTVZJS4EKCTjQs+0tuKNFK8kCwmQAAmYgwCFpDko0obNE/CaPgL+pw/b/DwTeoIUkpZfAYmPlDhJFhIgARIwBwEKSXNQpA2bJ+A5uhcC/r1k8/NM6AlSSFp+BfLl0WFov/9fo2L5HtkDCZCALROgkLTl1eXczEbAo19bBD19aDZ7NBQ5AQpJy++MHNl0GDOYQtLypNkDCdgHAQpJ+1hnzjKOBN51qotgb684WmFzYwQoJI0RivvrGdPrMGkUhWTcSdICCZCAEKCQ5D4gARMI8Kk2JkAyQxUKSTNANGIilZsOM8ZTSFqeNHsgAfsgQCFpH+vMWcaRAIVkHAGa2JxC0kRQcaiW1AWYP43PSIwDQjYlARIwIEAhye1AAiYQoJA0AZIZqlBImgGiERN6PbBkNoWk5UmzBxKwDwIUkvaxzpxlHAlQSMYRoInNKSRNBBXHakvnUkjGESGbkwAJ/EeAQpJbgQRMIEAhaQIkE6p4urnhQa4ceJA5Ex6kTwt3t+S4nywJ7jsGo9WRyrh7K6sJVlglrgQoJONKkO1JgAQ0AhSS3AskYAKBt22rAkFBJtS07yofXF3xIFdOPMiSGQ/Sp4F7KtcQoegE3IcfXgb6RgCUNSAFvj5TG3dupLFvePE4ewrJeITNrkjAxglQSNr4AnN65iHwrn1NBPtFFEHmsZ54rPi6JMWD3DnxMKsIxbRwT50C95M7w91Jh3vww7NAnxhNpqFHPlS9UAY37iaPUTtWjhsBCsm48WNrEiCB/xOgkORuIAETCLzrXB/BXu9NqJm4qwQ4JQkRitmywD1DOrinSgF3VxfcT6LDffjjceAHs02w34MKyHbtY/z7VGc2mzRkGgEKSdM4sRYJkIBxAhSSxhmxBgnAo1cLBL16nuhJBOn1eJg7Nx5ky4IHGdPBPXXK/4SiHvf1/ngQYD6hGB2sqZcawPtuVjx6G5zomSbGCVBIJsZV45hJwDoJUEha57pwVFZG4P2gDgh8cNfKRhX5cB5JjGL2bHiQMX2IUEyRFPedRSgG4F6Ad4LPYcmhz3D5aUp4MVIgQdYiZQpg1kRmbScIfHZKAjZIgELSBheVUzI/Ac8xXyPg+kXzG46FxafZs+NB9qx4kCkD3NO4hQhFFwfc1wfiXqA3AoOt08tX1C8Dvj1WG4cfJI3FrNnEXASyZdFh3FA+2cZcPGmHBOydAIWkve8Azt8kAl7Th8P/9BGT6sa10ossWfAgR7b/hGIquKcUoeiI+w6BuB/oA9/gwLh2Ee/t270tgkaXymDfXQqYeIcfrsPCBXX4phfXIaHXgf2TgK0QoJC0lZXkPCxKwHvJdPjt/cMsfbzKmAEPcmTHg8wZ8SCtCMXkuJ9UhGIQ7gf5wDsowCz9WIuRMQ+rocid/Nh1zzo9pdbCKb7GUaGsHl3bO8RXd+yHBEjAxglQSNr4AnN65iHgs2E55J8p5W26dHiQUxOKqUMu3U7qhPuOIhR98T7I3xQzNlHnx6tNkPRFRhy6TxFpLQtat4YerZtSSFrLenAcJJDYCVBIJvYV5PjjhYDf/u3wXjxV9fU+VeoQoZhFns6SJsSjqC7dDlZC8W2QX7yMyZo7cQl2xIrjrfHW1xWnH1JEWtNafd7CATWr6a1pSBwLCZBAIiZAIZmIF49Djz8Cu68dw3Dfu+rpLK8ieTpL/I3E+nuq7J0dA/fWxG1nJ1x/RhFpbSvWr4cjihXm3Z3Wti4cDwkkVgIUkol15TjueCVwx9cDeS6vidc+E2NnX70sjUYnS+BUoB6PeUekVS7hhBGOyJyRQtIqF4eDIoFESIBCMhEuGoecMASSnP0R/sF83nZU9Kfeq43it3Jh+6tg+FjxHZFuKYE0qXW4/yA49PHpOh2QMYMObikA90fB+BDHe9nFXtrUOrx8bX0e2cWznODIEMmEeRNhryRggwQoJG1wUTklyxAodvU3XPrw2jLGLWA1iacvch66gZsNi1rAeliTP19ogQxv0mKTu/UJJ22kjevp0bCOQ6iIWrg0EOcuBaFSOT06fe4AEX9S5BrOYyeDsOLXyK9ZypRRh4kjIl6f89vmQOw5GKTiDyWZxUEPvPUIxvDxAQgIgLK/4Hsn7D8chN+3JcwVTmlS6fD9d7z6x+J/EOyABOyIAIWkHS02pxo3Am3v7MFvb27FzUg8tk5z6zny/nkZp/rWsFivWQJSYP6xpnDUJ8PWu9brrW1S3wFN6ulx+14wtv4ZiBcvAe8PwfD0AiqX1yN/Hh127g3C6zfB6o7FfB/p0HeYf6SeySyZdBg/3BGbtwfiroFwdn8YYm/aWEfcuR+MZasD8cN0J/yyLlAJUxlD/Zp69B7iH+oJtdjCRGG4QF4dBvelkIxv7uyPBGyZAIWkLa8u52ZWAhOf/IPRj0+Z1aa5jKV4/BY5D99EkKMeNxsUhX+yJMh44SGynL2Pc50rmaubMHYavs+Hr/ZWgU96B+y6Y72eSPEEiqB75xGMYeON39HZrYMDypUOEXx+kSTga0Jy9qIAXLkecd5LZjspj+Ou/UGYM9kJV64HKVG58Hsn/LkvSAnZhCoNauvRohHPtROKP/slAVskQCFpi6vKOVmEwLZ399Dk1p8WsR0Xo8leeaLCzD240agYspy+p85QT/argezHbyPlo7e40qo0chy7hWwn7uBD6uS40rYM/JI7x6VLDHpaARW3FYZnAR0OW/lF49pR9DsPwMEh5J94DxcuC4C3waPHq1fRo1ZVPdKn0+HgsSCs3Ri54NOEpMd7wMc3GI+fBGPdpqDQeEg5Or55O8QjuWiGE1b+Fghp82llPfoM8UcKVyCVm06NIb4LM7bjmzj7IwHbJ0AhaftrzBmaicAjfy9ku7jSTNZib8blrTey/30Hd2oURKCzIzJcfoyPN/6Dg+MaQ16rPPUvHBtaD1nO3IPePxDvs6ZCwc3ncbZbZRT+7Qx83ZKq/49tmXOzAT46lQWPsuhw5kH8i6GYjrtsST2+6uSAJ8+Ccf5SMFKmACp+osez58EYNfn/Hsp2rRxQpoReCT2JnfxhWeRCMrWbDv17OkCEaVIXIHdOnYqBHDg65Ci8fi09mjcM8fp5fwCGT/DH7ElO2LIjUGVLS98Sh/nqTUj8ZHyWuVOckDxZfPbIvkiABGydAIWkra8w52dWArkvrcY9v/dmtRkTYyIOC206B89MbrjWoiQ8sqWG83sfVJm0E6d6V4dH9tRKSF5tVQoZLj3ChzTJ4ZMqGXId/Bcn+9dEyodv8MmCA9g3pTmCteySGAxgzZnPkPqBGy4lB248tX4RKVPThKSIxqf/3WspyTWSZNPjG38l6gyLeA7bt3bAtHkByrNorHxcQIeBXzuq5JyjJ0LiRJ2coLyQkhkutsqV0aPvUH/lodyyMxCH/w7C/KlO+O77ADx4ZLwPY2Mw5XURsXL1DwsJkAAJmJMAhaQ5adKWzRNIyISb5M88UGH2Xtyvlh836xcJw7rYqhNwc3+Nh+U/wkf7ruHEgFrIs+sKXhbKrDyS5ebuw9+DasM7nStqDt+Mo8Prw8ctqcnrVdgvPSYdrg+XAGcc8QOeJqI7IuWqn+/HOeLntSFJL1IkDrJ8GT26D4goJLNm1uG7YY5YuS5E8Bkrcp3QzAlO0LK2Des7OwPzpjhh3eZAnDgTIh6nzw/Av7eCIbGUm3cE4s+9xvswNgZTXpekIhHQLCRAAiRgTgIUkuakSVs2T2D+80vo9+CoxeepCwpGsD7spdEfbzyL5M89cPrrTyGvJ3vpCZ9USRGYxBH6gCDkPnAdjh/8lZj0ypACZX48jHtV8+NloUwotfQokr94r4Rk0ldeOD64DoLkfhoTyudviqDt7nJIkl6PbS+C4WvFd0RGNR1JepEydqo/MmfSoW93R5W1PXhMgBJX7z2Bw8eDlHdSjq0zZdBhyLgAvHkbjFrV9GjZ2AHzfwrA1X+DVfZ38mQ67D8aBD/fkPoiPod+F6Cyvg1Lly8cUKywHgNGhDxfXZJ+du4NVH3NmuikjtY1L6kJSxGnKpp4jpMRNiYBEiCBcAQoJLklSCAGBM57v0TJaxti0CJmVcXrWGz1SSX6JPP6SusySghKKfHLcegCgvG8SBYU2HYR+oBAJTavti6NJyVzROhIEnDktXc50kAXGIQsZ90R6OiA50WzquxuU8roh9VQbFs+JCuswyYrT6qJbj5ynY9c65MkSUgtSbKRo+tHT4JDvZNa+6AgYOPWQOw+EOIpbNbAAY3q6vHD8kCcvRCkRGW9mvow905u+OP/9TU74o1cMM1JeUKPnwqx9XlLB1SvHNJWjrTHT4+/GEnxmor3lIUESIAEzEmAQtKcNGnLLghkvvgLnvobpPuaadbJXrxXR9ePyuaCe9V8yH70lkqqOdWnuoqFlISazGfdlcC82qo03uROh0Jbzqlrfg6PbAj/5P+ppP/GU3XiDpzu9Sk+pE0eqxEuvtoEaQ9lgFNRPbbdiZ/j11gNNAaNsmfVwT8AEbyAjo5QXkUReJJNLWIyuqLFQEodqR8+zjK6tiJmxaMp3s74KpIQNHIg4yPjizf7IQF7IkAhaU+rzbmahUD7u/uw5vUNs9gyNCIJMdmP3caRkQ1Cfy2JMQ7+gfj7m1pIf+0Jiv/yd6iwlEpO3n6oNn47LrYvrzyVhiXzOXc8LZ49whG5sYE7Bzti5YnW0J9PjqBiOuw2IeHEmE2+nrAEGtb5fyZ5wo6EvZMACdgaAQpJW1tRzsfiBFa++hdf3ttv9n7y7LmKnIduYv+EpsB/4ZE5jtxE/h2XcGxwXfimSqqys998lB4X25dT/WtC8kyvanibM22cx1TpQ3YMOVATgY8d8V7uiLwbf16zOA+eBqIk0P8rRxT9OGzMLXGRAAmQgDkIUEiagyJt2BWBFwEfkOHCihjNWZ57nfrOC3XljsQoRlZcn3mg/Oy9eFw2Fx6Wy41M5x8g66l7KrHmVv3CcK+UF+n+fYoSPx9XdV4WyIR8Oy+ppJkT39SKsecx/Bh6vCyFBn+WgqOTDvczAWet+LnZMYJv55Xl3sipY53UnZcsJEACJGBuAhSS5iZKe3ZBoOaNrdj//pFJc5WnyuTbcUnFOco9ji8+zoKLX5QL9ToaGpF7IgtuuaASad7mTodrzUui4JZzeJUvI+5VL6CqyjO0JdnG0dtPiVJ5JKKpyTNRDXjKvVrI+2cuuGbV4YILcDOR3BFp0gLYeSW55kgytllIgARIwBIEKCQtQZU2bZ7A3OcXMeDBMaPzTH37BUotO4pTfWrgfRY3dddj2R8O4siIBvBNGbWLSBccrLyX4o2sMnmnEotPSkXMzDY6ABMq/HyxBVyPpUHKPDoc9AWeh7vCxgQTrGLFBHjtjxUvDodGAjZAgELSBhaRU4h/Au5+nsh5aZXRjnMeuYmP9lzDwbGNEOyghxxxizCUxxnK/Y/RFUmyKbj5HNJdf4rDIxuo9uYsmQJcsfB4MwRdcUGKQjr88TQYfn7m7IG2EpqAHGtPHs3HIib0OrB/ErBlAhSStry6nJtFCdS5uQ17PB5G20fy5+9Rfs5e+KVwwbtsqZH8pSeSvPdRl4a7V86rrvIJLZLX8l8+RNbT95SI9E7rigtfVlAXiZuzNHifDz33VYHvEz2SFdVh0x0m1ZiTr7XY4rG2tawEx0ECtkuAQtJ215YzszCBZS+vodv9g0Z7kUvGJaYxiacPnhXLBqcP/shy+p56Ko08ylCKiEY59pbnYUtxfvdBxVO+/DhzrJ6JHd2gBj6tgErbCyPIH3Aqrse2W7ZxR6TRhbDDCjzWtsNF55RJIJ4JUEjGM3B2ZzsEPgQFIM2F5fAJCjQ6Kbm251K7T1QCjZT0V5+g+Mq/Q2Ml8+y+ihxHb+HY0LrwS+5s1F5sK8y+VR/Z9oRkjQcW12HPLXoiY8vS2ttlTK/DuGGOcOI95Na+VBwfCSRqAhSSiXr5OPiEJtDj/iH89PJqtMOQhJmaIzbjaqtSeFwml6orT6iRJ9Xsn9hMXdsj8ZByjU/452ubc36r/2kN51NucHQB3uXT4QiPs82J1+psNamvR5N6zNa2uoXhgEjAxghQSNrYgnI68UvguOdTVPp3s9FOC206q+6EvFWvMBx9A5Dz0A1cayHCMqfRtnGt8LFfOkw+3AD+N5MgWTod7qYHzvGOyLhiter24oUUb6R4JVlIgARIwJIEKCQtSZe27YJA1X+34IjnE6Nzzb3/OtJfeQzPzKnwoFIevM/sZrRNXCu0eVsY7XaXh98rHVLm0OGsE3CLd0TGFavVt69cTo9O7eiNtPqF4gBJwAYIUEjawCJyCglLYPXrG+hwd1/CDiKS3kc9rIbi2/KpV9zy67DPC3j5ljGRVrdQFhjQoN6OKJT/f+3dCbxN5f7H8e/exxTHPF0hl0KFzIVS5jGkcpEmf0VSSl00qFsy9L+iMiWi0ZCxyHQQ4tyQKeEcMzdjHPN8zt77vtY6kWPIoX3OeZ69P+v1Oi87Z+21fs/7t3r17Vl7PZvZyBSg5ZAIIHCRAEGSSwKBIAgUXztGm88cCcKRgnOIj2KaKs+CfO7BspX2aMrOgOLjg3NsjmK2QNnSHj3/NE/YmN0lqkMgdAQIkqHTS0aShgLJ/aablC4xvbz6aklLeVdlcU+VpZxHkzYxC5nS7iYd3wmRTphkQwABBFJDgCCZGsqcIywECq75QrvjT6TZWKudKqTu8+vo7I7E2aj05b2atpE1ItOsIWlwYmYj0wCdUyIQ5gIEyTC/ABh+8AT671utf+78MXgHvIYjPR1XQY1nVFD88cQ3+cp5NIeZyGsQDI1dmY0MjT4yCgRsEiBI2tQtajVewPn+bed7uFNz67O9jorPTFyfMkOkFFfMo+gt3M5OzR6YcC5mI03oAjUgEH4CBMnw6zkjTkGBj/av07P//SEFz5D00KPWNFfW6NzuX0bm92hTLuln1ohMNX+TTtSlYzqVupXPRprUE2pBIBwECJLh0GXGmKoCFWImaNXJAyl6zvy+LBoa3Vz+dZnc82Qv6tFPXmkra0SmqLupB7+3mlePt2TdSFP7Q10IhLIAQTKUu8vY0kRgyuFtenDLrBQ7d8PjN6vj3Pt0Zo/XPUeO2zyafVQ6xBqRKWZu8oGzZJZe7ZJOf8vHbKTJfaI2BEJVgCAZqp1lXGkq8NCW2Zp8eGvQa+iyr4qqTyst3+9rQma/w6PJOwKKTwj6qTigJQLNG0eocb3E/6lgQwABBFJbgCCZ2uKcLywE1p8+pFLrxgV1rO9vbqhCcwqeP2aWCl5N2sDyPkFFtuxgNxXyuLORzndrsyGAAAJpIUCQTAt1zhkWAu/sWa43d/8UlLF+taKFMi7747u501f0alosITIouBYfpGPbCFUsx2ykxS2kdASsFyBIWt9CBmCyQOWYiVp+cv91l3jb2Tzqs6iREjZmcI/h8UoJzhqRG1je57pRQ+SN1at69UQrHrAJkXYyDASsFSBIWts6CrdBYOGx3aqx8dvrKvUfh0vp0agqOhOX+BBFpuzS/r97Fb2ZmcjrAg2hN+XM4VH3zhHKk5sHbEKorQwFASsFCJJWto2ibRLosXupeu9ZeU0lv77rXpWbWuL8e7IW9GhjdunnHcxEXhNkiO786D8iVONubmmHaHsZFgJWCRAkrWoXxdoqcM+GKYo+vjdZ5X8U00R5FuQ/v2+OWzxaEpC2s0ZksvxCfafyd3jVqR23tEO9z4wPAVsECJK2dIo6rRZYffKAysdM+NMxRAS8GrO0pbyrspzfL2cpj2Yekg4fYSbS6gsgSMXnyuHRS50iWDMySJ4cBgEE/roAQfKvG3IEBJIl8PH+dXrmCl+fWOVUQb38WcMkx8le3qNJWwNKYI3IZPmGw05PPRahKpW4pR0OvWaMCNgiQJC0pVPUGRICHXYs1PAD65OM5am48qo/vmKSv4us5NXEGB6qCYmmB2kQdWp41ao5t7SDxMlhEEAgSAIEySBBchgEkitQLXayfjyxz9299/baKjGzaJK3pq/s1bT1hMjkeobDfsWLObe0WXg8HHrNGBGwTYAgaVvHqPe8wLETp5SQkKCc2bMGTeXgoaPusXLlzJbkmD6fTwcOHVX+PDkvOdeZs/EK+APKlClxrcerbbGnD8sJk8MHP3bJrr6KHs2J5fOQVzMMp99njZQ6d0inojex1E849Z2xImCLAEHSlk5R53mBk6dOq3uv4fo+OnFJnbK336yBvTorT64/vvnlQq55i1eqc4+BlwiujBqhjBnSy+8PaOTY6fpiYpScIJklcyYtmzHM3d8JkH0HjdHshYnfUJMtMrM6tW2uRrXucv957JR5GjFmuvu6TfPaavdIY/e1c5wGbbpp2hd9Lxs+5yyN05ERScPqsXJeRW9iJpJLPanAM20jdFKqlgAAD0BJREFUVIlvr+GyQAABQwUIkoY2hrKuLDByzHSN/26Bvhz4um64IaM6dh+gYkUKqGfX/7vsm+YuWqHX+o7QhOFvJ/n9TQXzyePxaMDH4zVl1mJ1fLypGtS8S/Hx8cqfN5e778TpC/XvIWM1a0w/5cqRVd/MWqw+A7/SgkkfKFPGjLrvoRc08r2ubh0NHumm1XM+Ufr06dR/2NdK8PnVvVPrKw5k60K/Vn7pc3+/u5RHa7YzE8l1n1TA+eYa5xts2BBAAAFTBQiSpnaGuq4o0KL9v1S/xp166vfZv9kLftJLbw3R2vmfusHw4s0Jkm8P+FyLplw6K/nbgcOq+fCL6tW9nZo3rH7Je4d+9o2+jYrW1M/6uLOX/921Tw3bdFfUuPcUCARUv3VXrZg1XBkypFeZWm31zae9lC1rFjV5/FVN//Jd5c2d4087uXS0T1G/BrRjDyGSSz6pQItmEapfixDJdYEAAmYLECTN7g/VXUbgzkbPuMGv3n2V3d+u37hDTrj8cdoQN8RdLki+8MYgNWtwjzJlSK9KZUuqfo3KioiI0Lnb3q2a1dKmbTvdsHh/3WpqVv9u9zBOcGzzXG/3tvnTbe7X7PnLlPmGjOr7Wnv5/H5Vvf9ZjR7SQ5lvyKR6rf7pzkj+e+g4d58u7VvICarOrXLn50rbuMk+zV3ILW0u9j8EGtfzqnljntDmmkAAAfMFCJLm94gKLxBwZgFL12yroe920X1Vyrq/2bJ9t5o++Zrmft1fBfLnvsRrbew2Rf2wXNkjM2vX3gP6eup8tX6gtnq8+JjGTJmr3h9+pefbPaiSxQprw9ZfNWjkZPV74xk1ql1Fp0+fVdd3hun0mTPasmOP9u0/qA/feV51qicu1zNy7Ax9Nn6W+7p1s1pqWv9uPdjuDc0e208ffjJJPyxZo/iEBHV68gE5YfVK2/DPfVq2kjDJxS7VrO5Vm4cJkVwLCCBghwBB0o4+UeUFAs6MZO9XnlLdeyu5f3tuRnLJd0OVNTLzVa2mzFykHv8/UmvmjXRD5bhvv3dvXZ/bXu0zXKdOn9UHPZ/TgOETtGb9Fo0a0F0BBfTlhCj1+2icpozqpRLFCrlvcZ4eD/j97mzom/1GqUC+3Gr1QC3d0+x5LZ/1sdZt2K5/vfepe6v7z7b3BicodhO3uK/awBDe4a6KXj39OCEyhFvM0BAIOQGCZMi1NPQH5NzGblDjzvNPSF/tM5IXiyxe9os6dOuvFbOHa+mqGD37yvv6ee5IpUuX+B/wl98eqtNnzmpInxfV8pm3VaFMifMPzThPeDufhXzzpSfUsmnNJIfe9utetezwluaNH6CYTTv0cs+P3M9l7tkXpzotX9ZPM4e5t8D/bOs3KEEbNhMmQ/8qvnSEZW736IUO6cJx6IwZAQQsFiBIWty8cC39kzHTNeG7Bfpi4GvKnCmjOr7yfpKntp0Hb5xb3F07tnKJRk+eqxI3F1LpkkV16MhxdXtnmDJkSOfOMjqzibVbdNFjD9XTs08205qYrXr0ud7ubW/n9nfPAZ9rzqIVGj34dRW+MZ+iFi53H+yZ83V/3XjRbfRuvYa5t8edJYCOHjuhqk06yZklXbthm/oOGp1k1vPPejd4hE+r13KbO5yu7ztKedS5PSEynHrOWBEIFQGCZKh0MozG4awj6XxuccF/VrujLn1rUQ3u/cL5J6Sbt3tDRQv/TQPe6uT+3rk97SwZdG4rX7q43n29vQoVyOv+1Y8r1sl5GOfEydPuPz/SvI5eea61+zDO4aPH9cGIiZoxb4n7uyKF8uuJFg10f92qScSdz2m2franuyzQuVlHZwmgb2ZHK326dOrS/mE1qVst2V0aNdqn/ywjTCYbzOIda1X36hE+E2lxBykdgfAWIEiGd/+tHr0z63c2PuGKC5FfODjnVvWBuCOKjLxBObJFXjJuZ+HxvfsPKWf2yMvefna/2ebgkfPrSyYXzpnxdJ4Ud9aWvNaNp7mvVcy+/Zs29KppAz4TaV/nqBgBBM4JECS5FhAwWGDqLJ+mzmRm0uAWXXdphMjrpuONCCBgkABB0qBmUAoClxNwHr5xHsJhCx2Bh5pEqGEdFhsPnY4yEgTCV4AgGb69Z+QWCezaE9DA4T7FHeSJbovadkmpWbLIXSPyzgqESJv7SO0IIPCHAEGSqwEBSwSOHJU+G5ugX9YTJi1pWZIyixT2uCGy2N8v/RpPG8dDzQgggIAjQJDkOkDAIgGfTxo3xaf5i/jcpEVtU4Wyid9Wkz2bTVVTKwIIIHB1AYLk1Y3YAwHjBKKX+jVpmk9HjxlXGgVdIJAhg/RAowjVq8mtbC4MBBAITQGCZGj2lVGFgYDzuUknTK5Zx61uE9td6laPmjWKULEi3Mo2sT/UhAACwREgSAbHkaMgkGYCzhJB06P8cm57s5kh4MxC3l+fWUgzukEVCCCQkgIEyZTU5dgIpJLA1u0BTZ/j089rmZ1MJfLLnqb0bR41rhuh4jczC5mWfeDcCCCQegIEydSz5kwIpLjA94v8mjHHp8NHUvxUnOACgchIuQGybg1mIbkwEEAgvAQIkuHVb0YbBgK/HQhoxhy/Fi/hye7UaHeVSl41rudVgfzMQqaGN+dAAAGzBAiSZvWDahAImsAvMQFFfe9TzEZudwcN9YID3V7So5rVvSpfhlnIlPDlmAggYIcAQdKOPlElAtctsCDar6j5fv22n0B53YgXvPGWookB8q6KBMhgeHIMBBCwW4AgaXf/qB6BZAkcOy73VvfSFX7t3E2gTBbaRTsVLeJR9ape3VuVAHk9frwHAQRCU4AgGZp9ZVQIXFHACZPOD+tPJu8iKXmLR/dU8apqZQJk8sTYCwEEwkmAIBlO3WasCFwgsGlrQMtW+LV8tV/OjCVbUoEytycGyIplCZBcGwgggMCVBAiSXBsIhLmAEyKdMLl8lV8bNof3be/cOT2qUNajCnd4WQsyzP+9YPgIIJA8AYJk8pzYC4GwEHCC5Mo1fq2LDWjvvvAJlU5wPBcgne/HZkMAAQQQSJ4AQTJ5TuyFQNgJxG4KaF2sX+tjA9qxM7RCZe5cHjmffSxZPPHPPLlYAzLsLnAGjAACQREgSAaFkYMgENoCW3cE3PUoYzf6rV2X8o/g6HXDIxsCCCCAwF8XIEj+dUOOgEBYCZw4Ka3fkHj7e8u2gPYYegs8T26PbiuR+HNrca+yZQ2rNjFYBBBAIFUECJKpwsxJEAhdgQSftHNXwF2f8tfdAff1gTgp7lDq3Q4vdKNHhQt65Px57jXBMXSvOUaGAALmCBAkzekFlSAQUgJ+v3TgYGKo3B8XUNzBgI4ek44e+/3Po4mvnSB68eb1Ss5DLxndH48yZkx8nS2rR3nzSHnzeJQ3t0f5fn8dUnAMBgEEELBIgCBpUbMoFQEEEEAAAQQQMEmAIGlSN6gFAQQQQAABBBCwSIAgaVGzKBUBBBBAAAEEEDBJgCBpUjeoBQEEEEAAAQQQsEiAIGlRsygVAQQQQAABBBAwSYAgaVI3qAUBBBBAAAEEELBIgCBpUbMoFQEEEEAAAQQQMEmAIGlSN6gFAQQQQAABBBCwSIAgaVGzKBUBBBBAAAEEEDBJgCBpUjeoBQEEEEAAAQQQsEiAIGlRsygVAQQQQAABBBAwSYAgaVI3qAUBBBBAAAEEELBIgCBpUbMoFQEEEEAAAQQQMEmAIGlSN6gFAQQQQAABBBCwSIAgaVGzKBUBBBBAAAEEEDBJgCBpUjeoBQEEEEAAAQQQsEiAIGlRsygVAQQQQAABBBAwSYAgaVI3qAUBBBBAAAEEELBIgCBpUbMoFQEEEEAAAQQQMEmAIGlSN6gFAQQQQAABBBCwSIAgaVGzKBUBBBBAAAEEEDBJgCBpUjeoBQEEEEAAAQQQsEiAIGlRsygVAQQQQAABBBAwSYAgaVI3qAUBBBBAAAEEELBIgCBpUbMoFQEEEEAAAQQQMEmAIGlSN6gFAQQQQAABBBCwSIAgaVGzKBUBBBBAAAEEEDBJgCBpUjeoBQEEEEAAAQQQsEiAIGlRsygVAQQQQAABBBAwSYAgaVI3qAUBBBBAAAEEELBIgCBpUbMoFQEEEEAAAQQQMEmAIGlSN6gFAQQQQAABBBCwSIAgaVGzKBUBBBBAAAEEEDBJgCBpUjeoBQEEEEAAAQQQsEiAIGlRsygVAQQQQAABBBAwSYAgaVI3qAUBBBBAAAEEELBIgCBpUbMoFQEEEEAAAQQQMEmAIGlSN6gFAQQQQAABBBCwSIAgaVGzKBUBBBBAAAEEEDBJgCBpUjeoBQEEEEAAAQQQsEiAIGlRsygVAQQQQAABBBAwSYAgaVI3qAUBBBBAAAEEELBIgCBpUbMoFQEEEEAAAQQQMEmAIGlSN6gFAQQQQAABBBCwSIAgaVGzKBUBBBBAAAEEEDBJgCBpUjeoBQEEEEAAAQQQsEiAIGlRsygVAQQQQAABBBAwSYAgaVI3qAUBBBBAAAEEELBIgCBpUbMoFQEEEEAAAQQQMEmAIGlSN6gFAQQQQAABBBCwSIAgaVGzKBUBBBBAAAEEEDBJgCBpUjeoBQEEEEAAAQQQsEiAIGlRsygVAQQQQAABBBAwSYAgaVI3qAUBBBBAAAEEELBIgCBpUbMoFQEEEEAAAQQQMEmAIGlSN6gFAQQQQAABBBCwSIAgaVGzKBUBBBBAAAEEEDBJgCBpUjeoBQEEEEAAAQQQsEiAIGlRsygVAQQQQAABBBAwSYAgaVI3qAUBBBBAAAEEELBIgCBpUbMoFQEEEEAAAQQQMEmAIGlSN6gFAQQQQAABBBCwSIAgaVGzKBUBBBBAAAEEEDBJgCBpUjeoBQEEEEAAAQQQsEiAIGlRsygVAQQQQAABBBAwSYAgaVI3qAUBBBBAAAEEELBIgCBpUbMoFQEEEEAAAQQQMEmAIGlSN6gFAQQQQAABBBCwSIAgaVGzKBUBBBBAAAEEEDBJgCBpUjeoBQEEEEAAAQQQsEiAIGlRsygVAQQQQAABBBAwSYAgaVI3qAUBBBBAAAEEELBIgCBpUbMoFQEEEEAAAQQQMEmAIGlSN6gFAQQQQAABBBCwSIAgaVGzKBUBBBBAAAEEEDBJgCBpUjeoBQEEEEAAAQQQsEiAIGlRsygVAQQQQAABBBAwSYAgaVI3qAUBBBBAAAEEELBIgCBpUbMoFQEEEEAAAQQQMEmAIGlSN6gFAQQQQAABBBCwSOB/wzFnmcjJEnIAAAAASUVORK5CYII=", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = px.pie(data, values='2020', \n", " names='Country Name', \n", " title=\"2020 GDP by Country's Income Level\", \n", " labels={'Country Name':'Income Level', \n", " '2020':'GDP', \n", " 'Number of Countries':'Number of Countries'},\n", " hover_data=['Number of Countries'])\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "d837268a-fdcb-4334-b8d9-b28f4f3c65de", "metadata": {}, "source": [ "Run the two cells below to plot a pie chart of top 10 GDP ranking of US states." ] }, { "cell_type": "code", "execution_count": 13, "id": "165b80ee-4014-47de-9a5b-39a79c62f22f", "metadata": {}, "outputs": [], "source": [ "data = pd.read_csv('Files/State_GDP_Current_Dollar.csv')\n", "data = data[-10:] # select top 10 states" ] }, { "cell_type": "code", "execution_count": 14, "id": "c9c331f2-7d66-4af7-8966-10c86f0b69af", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "domain": { "x": [ 0, 1 ], "y": [ 0, 1 ] }, "hovertemplate": "State=%{label}
GDP=%{value}", "labels": [ "Washington", "New Jersey", "Georgia", "Ohio", "Pennsylvania", "Illinois", "Florida", "New York", "Texas", "California" ], "legendgroup": "", "name": "", "showlegend": true, "type": "pie", "values": [ 604253.8, 618579.3, 622627.8, 677561.2, 771897.9, 858366.9, 1106035.5, 1724759.1, 1775587.8, 3007187.7 ] } ], "layout": { "autosize": true, "legend": { "tracegroupgap": 0 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Top 10 States GDP in 2020 (in million US current dollars)" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAFoCAYAAADkaRuEAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQV0U0kXx/9JqhSKFoo7C4u7L+6+i7u7s7i7uy7utiwOHyzu7u4Uh5YChXrTfOdO94W0TdokTdrInXP27G4zM+/Ob+a993937szIVCqVCpyYABNgAkyACTABJsAEmICBBGQsJA0kxtmZABNgAkyACTABJsAEBAEWkjwQmAATYAJMgAkwASbABIwiwELSKGxciAkwASbABJgAE2ACTICFJI8BJsAEmAATYAJMgAkwAaMIsJA0ChsXYgJMgAkwASbABJgAE2AhyWOACTABJsAEmAATYAJMwCgCLCSNwsaFmAATYAJMgAkwASbABFhI8hhgAkyACTABJsAEmAATMIoAC0mjsHEhJsAEmAATYAJMgAkwARaSPAaYABNgAkyACTABJsAEjCLAQtIobFyICTABJsAEmAATYAJMgIUkjwEmwASYABNgAkyACTABowiwkDQKGxdiAkyACTABJsAEmAATYCHJY4AJMAEmwASYABNgAkzAKAIsJI3CxoWYABNgAkyACTABJsAEWEjyGGACTIAJMAEmwASYABMwigALSaOwcSEmwASYABNgAkyACTABFpI8BpgAE2ACTIAJMAEmwASMIsBC0ihsXIgJMAEmwASYABNgAkyAhSSPASbABJgAE2ACTIAJMAGjCLCQNAobF2ICTIAJMAEmwASYABNgIcljgAkwASbABJgAE2ACTMAoAiwkjcLGhZgAE2ACTIAJMAEmwARYSPIYYAJMgAkwASbABJgAEzCKAAtJo7BxISbABJgAE2ACTIAJMAEWkjwGmAATYAJMgAkwASbABIwiwELSKGxciAkwASbABJgAE2ACTICFJI8BJsAEmAATYAJMgAkwAaMIsJA0ChsXYgJMgAkwASbABJgAE2AhyWOACTABJsAEmAATYAJMwCgCLCSNwsaFmAATYAJMgAkwASbABFhI8hhgAkyACTABJsAEmAATMIoAC0mjsHEhJsAEmAATYAJMgAkwARaSPAaYABNgAkyACTABJsAEjCLAQtIobFyICTABJsAEmAATYAJMgIWkHmNAGR6OcGU4HB0dYswdFqbE63efkCplMiRxc9Wj5uhZgoJD8MnnCxwcHJAiaRK4uDgZVY+1FQoJDcP7j5/h6uKMlMmTQKFQWEQTAgKDEB6uQmIj+zOmRgQFheDT5y8IDVXCM3UKuCVyibHN/gFB+OjtiwzpUsMphrHo990fnz5/FXk8U6eMMa9KpcLb9z5wcnJE6lTJjGL++PkbnL18B6lTJkPdaqVFHcEhoQgNDYOri5PF9KUuu/YfuYAv376jTePqwva3H3xw+OQVlCySB3lzZbHo9ujTYUqlEp98viI0LAzJk7kb/WzS51r2mIfu4827jyFn1vQoX7KAQQi0jbVrtx/j1v1naFijLFIkdzeovrhm3nP4HD5/8UPF0gWRLXO6uFbH5e2EQIILSXqAl2vQRy/cnVvWwYCuTfTKa8pMM5duxdpth3Bx/xIkSZwoWtX00pwwZx12Hzqr/i1X9oyYP6E3MqVPo5cp9OCYv3IHLl1/ECk/PUjqVi2NLq3qIkWyJOK3bXtPCNHVv0tjveqOmomE8fwVO5A1U1o0qlXeqDpMUYjE4+otB7Hr0Bm8eecdqUp6iTeoUQ7VKxQT4pJSidrdQWJKSiS8PFImQ6kiv4p25MudNZpZ2srkzpEJzRtWQe3KJWNtRuUmA4V4u3xwWaxCL9bK/stw/c5jTJy3AY+fvY5UpNpvxTCib+togo6uP2DsYvFykRLlnTqii5qNNC7+2rBP2KuZOrWsg74df4eDQ2RxvmHHv1i4eqeaKY21SUM7oUKpgvo2BSRSGncdh7fvvbFh4Uj8kj2jKDtm5mr8c+A0/poxCOVK5Ne7PnNn1GZX696TcePuE9w7uVZc/sK1e+g8aCZG9muNlo2qWkR76rQZhpevP6ht1OREH7AFq3ZCwV+zY/OS0eqfaBwsWrMLOw+eiYSV7pvKZYugXdMayJMzs7mRW2z9cX2OSg0j4fVbo75oWLMcJg/rbFB7tY016rOl6/Zgx4rx8d4/9x69QNNu48WzlMaSQi43qD2c2T4JJLiQ/OEfiOFTVkSif/P+U/h+8RMeATfXn569qr8VRYMaZeOlp8irc+PeU1y79QirthwU19QlJIdMWoYDRy8Ke+kF/9zrPTbvOiqEx9Fts+GexC1Gm70/fwW9KEgk/ZorM34rWRChSiUePnmFc1fuiLJ0U9OLglLbvlNAX63Si89QIOQpKlStMyqWKYTFU/obWtwk+Uk4dhs6W7wcM6TzQMXShZAlgyd8v33Hhav3xIudkqYQkURhg5rlEBoSCm/fb7j/+KVaCA3t1QJtm9SIZJ9mmbCwMLz78Fld96DuzdCxea0Y29Nv9ELxhb5y1mCTeYe37DqGSfM3oEyxvCiSPxd+BARi77/nxZgvWiAX1s0fDplMJuyij5RarYYKcfhHnd+Q95esOHX+Jk5dvIWyxfNj+cxBavv7j1mEI6evol61MsiZLQOevngj6qXUu0Mj9GjXQJ13x/5TGDtrjWDfvEFlkFdlzbb/CZYbFo4QdumTtuw+hknzNmDu+F6oXqG4usiKTftx6sItDO7ZXD1u9anP3Hm02aWPkEzo9tRoOVh8bGm75yUhSS//bcvGCoT0sdim92Tx8ZHGIwWqlCsiPkQfPXuN81fvin7WZ/ybuz8Ssv64Pkcl221JSFKb9h05j2GTl2PikE74vXbCORoScmzwtQ0jkOBCUpu5kjD736bpenv0DGt27LkvXr+PTgNnRMqoTUhKDxHyQG5dOgbOTo6izPyV/2D5xn3CwxOb12/4lOXihT9leJdoQpk8j3P+2o4OzWsLkUkprg9ASxCSXQfPFiKZvuJH928bTaTdf+yFsbNWo1/nxmqPFolCZ2cnnNm1QN0v1JYjZ65h8ISlEdwn9kHV8kXVv2srQyKVxAMlU3oaYx9VETlu3n0KhUKO/HmyqYvQh0vper3E/x/bPkdMdVM6fu46+oxcgGb1K2HMwHYRIkGpRLt+04QgPrhxOjJniPB6k4gskCebEA5SkjweJBgPb56p/nv99iPw7OU7aN5j56/cRZfBs1C/ehlMHdE11ubQ2K/VaghyZcsoxKckfmMtaGEZ9BGSCW2yoUKSvJCjZ6wSQoAEgWYKDArG6q3/Q8rk7uIjwl5TXJ+jEjdbE5IUytOi5wS8ePUe/26dhWTuie11iHC79SRgdUKSPCk7D54WX9pZMnoKkdG30x+Rph2nL94i4gzJ27R8434xVUUChKaIB3ZtEmusI7EjD827jz4C44S563Hl5kOtHknpgf1nj2bo0Oynd+vF6w+o22aYiJlZNn1gjN0hTZ+SQIotJmby/I3Yc/is8ChoTkGO7N8GiVydMXXhJjx8+gofPvmKPCRwG9epIIQITW1SzF//MYuFiCOPabECvwjbKBZzzrgIIUNCZcOOI/jfiUu4+/CF8FqRl7Rv5z8ixVcdO3sdW3cfw8P/pmizZvQUno9mDSrDxVl3bOepCzfRc/g8ZM+SDrtWTdQZQ0feOPK2SLGD2kShBFYSQfT/V/63DIlcI+INdZUZOG6xiIPbtGgUCuXLobN/KKyBYgjnTegt8lAM68Cxi1E4f07Bdt32QyIcgcRbq0ZV0L55LaOng3oOmys8jZo2SR8ZW5aORoE8ER5pSrrGXdSGUF8WqBIhJO4cXwO5XIaYxmb5Rn2FZ/TW0VXRpsKj1k0fOOSt1zZ9TR9Gh45fElP1NH4oSfdlr/YNsXjtbpy5dFv8vWalEhjcs0WssXua7CksY/3fh4Vnnjz1NH1fuWxhUIwXPSNIZNPzoUfbBuq4TbqWNrv0EZLaylF9FKawbP0+3Lz3RDxjiubPhYHdmkT6AKaQl39PXkHvjr8Lbw99HJB3kTzSI/q1Ad03sSVDheS42Wvx976TmD+hD2gmJy7p1duPYqr19oPnoNmTX3NlESEn9IFMfTJy6krxnGvRqEqky9DHXaoUSTG0d0vx93uPX2Lx6l1o1rAyMqVLDYpNpfha4tCodnn1fUXPqh0HTuPuw+cilGj8nx1E+ede77Bg1U5cu/NYjNHC+XKiZ7sGKFM8n/q6+rKO6Tma3jNVjLgOHruIjf8cUXt7SxTKLfo16tQ2PYPnLN+OC9fuq2fYOreoE8lefae2aVz/c+AU3rz3+S9O2kOMe6qPnkNSku6xGaO6Yd+RC7h88yH8/QMxqn8bMTO2bc9xHDh2UYjExG6JkCdnJtSvXhY1Kv6cTaC6Tpy7gd4j54tZDJrN4MQEYiJgVUKSbhJ6edBLu2Th3PB681EtKP9ZMUHt1WrWfbwQQFKiKR/p//X1tmhCI48QPfy1eSTphbhk7W6smjNExOpJiRYx5KvUQbzMDmyYFuMopPhKiteh+M8OsQgRyVtLFUoeSvrv2WN7imvQNCjxoQeEo4ODehqrU4vaGNitKSiUoMOAaSCPn2YdbolcsXbeMJDdvYbPE4KGBFzV34qJFz49uOl6W5eNFUJJmv6gPGWK5RMvFHqpknilr9iYHsYzlmwVAizqdGhst2pMQpLKkgeGBBZNDRcrGCGQdZUZMW0l9hw6i/ULRojpZF0pqsggfiXr9FBnp/aTqJHG17SRXcXUsqGJvAAV/ugnOJPnUBJf0vWv/7tC7e2muh888ULjLmNFDB/F8ulK9PKt126E+ECRPLmSt71n+4YgUaeZaCr/6JlrOLFjXqyLb0jcfPn6Hef3Lo4mOrXFeWm7L+mFRmOGpu0nDO4YI7ao7KlNnh7J1WOZ+pGEZdS/n92zEMmTRsQXa7NLHyGprRxxIl6USAzTPXDy/E3x//SBJL3g5y7/Gys3H1C3jf7+zc9fLQgObpgW64IkQ4XkweOXhJeevPM00xHbQi5d4K/ceoj2/SKeX8UL5RYfiNJ9Th83qVMmR5WmAyN5zKW66N4jb/nfy8eLP9FzpPvQOeI5Ij1/6O/0TB7Zr424r+jZRYuC6D6gJI3bqHYkcnEWzyhKS6b2R4XShcR/68s6pudoTHHtFOIwb8UOcS0SwBRCIMW1awpJWnT5R+cxYmyTyHZPkkiMDfp/iqOkvJT0FZLS84rEcxqP5Pjo/UV8LFG/7lkzGWnTpBT1SfeY5juP/r5/wzSs2XpQxC3Ts6Vw3pzCUUL3CzE//vecSEOAPuLLN+yD9Gk9xFjmxARiImA1QvLpy7do0H6kCAJeNXuIehWt9OAgkURiSfNmGtKzuXjR0mpr+pJu1n2CeHhrvqj1GR4xCUlJBG5fPk69wlOqk7w7wcEhYvo0pkTezvb9Ix7WJDx/K1VQBFmTGMyRJX20KUNdUzLkRaVVgOTpk9L3HwGo3WZYJDtimtr+3/FL+HPCUrRoWAVDerUQK37pYTl+9lrxEFo4ua8I1G/Zc6IQ8fSAkjwqdP3t+06gXvUy6he3tnZL09qaZfXph9iEJIlx6g9N77C2MrSCtW7biJjUc3sXxTh1o0tI0gN8zIB2qF2llPDyXb7xAB0GTNfLA62trdILhV6y0ouX8ukSEOTRot/IkyB5krXVS4tplq3fK+4NukcoSSKDPEVt/1upLJWVxLimENJW70efL6jceIBOARiTkCQB26l5bfHh5/v1O2q2HCz64vbx1TF6cyUhSexpupa8YjSdTp438sDR36cM64Iq5YuIv0uxqJofLKYSkpqxq5rjWBJLmvGr0jOKRN2Ifq2RJlVy4fUnUXX+6r1I8c+67gNDhSTxpLFPibjUqlzyv2dKZvyaM7NeszL0nGjYcZSIY147fxiKF8wt6qOp8ZWbDqBm5RJI4pbIYCFJddDiQbKJdgoICQkFfchKH2jEiWKds2VOC3p+0Udp/fYjhR371k1RryYmTyl9ONPzbu/aKcI2Q1gbOrX97uNnVGs2SIhbCmOSPpbfvPdGjRaDI3kkJaE6c0wP9aI+Kt+ww0hh57G/5woPvL5CkmYR0qRKpp5poTposdy0RZtFyAt5cTXffcRkQJcm4n0ZHByKxIkToWz9XkI0Hto8Q72TAz0LySkgvTs1x580G6L5IabPc5rz2B8BqxGS9EVPD4moMXDSA1PzBUxfZeTpiCrgaDHBrKXbMHN0dyEA9E0xCUlpipQeZJoCjuqWVlrG9oKkvLv+dwZzlv+t/hKXbKMv0KgLFmJ7AJKge/ziNT55f4XvVz9s3HlExMNd2LdYTG/EJCSl6VV62KRNHfGVS4m8WN2GzFYv2pBsoMU6tGjHkCS9FC8dWBppWx3yNn/w/hKpqsZ1flO/OGITktJDWdMzIL1MaXoskIQ2rS7+518hXLq3rY8+HX+P0XRdQpI8UJIXmCogTy69CGkVeWwe6KgXJFFG3kXywmh6UymfZH/UsUwvgEqN+4sFXqvnDNXaBokHvfj2rJ6kDpvYuuc4Js5dj3GD2qNJvYqRytKUHy0Ui23BjbS6k0JFaFo5atIlJLXdl9I9FJsXVBKSUdnTx1P15n9Gi+2UhIam19ZUQpLiXFv1niSEuDR1KzGQ7g1pBkMSN7vXTELOrBnUqKSFSvQhEHVqMSpPQ4UklacPvUnz1kfy/tHfSUzQx1bNiiXER5CuROXpgzEmbzFN3xrqkRzcoznaN6sZ6bJS31K4zpJpAyL9Rt5+eqbTWB3Vr02k34g12Sl57A1hHdtzNCoXqb9I5NLCPilFjZGUwkk0Ba6Ul0IEaAxSG6mt+gpJqTyNda/XH+DzxU8spqPQEgrhooVTlCSP5M0jKyN9LFBIU/Fa3cVHBa0G12c3EcnWXasnIVe2n+PWkGc957UPAlYjJKVtO7R5saJujaFLSEqxeYauVoxJSNLKV4rJ0rZVgxT7qO/qaprefPTslYgbohf10TPX1Vu57Fk7WXgnKel6ANIDbOn6vSKeSVuSvG8xCUnphaVr+DeuW0HELJHwHTV9lchGUyUUJ0TTS+StjOnlRPm7/DlTeGKi9mWTrmOjvfQovlTamy02IUnxUSOnrRQhArRVFKWo2/9I7aKYoab1K8Uaz6ivkKR6iR3tCRl1miimRwl55Nr0mSy8LfSSjBpnpmsMSV4Q8t7Qx1XUdPvBM7ToETElpbnin/6fYtOGTv4r0vY2UnnpPott6xHaN5I+LHR9lBkiJCWv/pFts5Huvyk6bcx0Ccmvfj9Qtn5v1KlaCjNGRXjhKEkveM1wFlMJyZhWtlKcMsXQ7Vw1UWyHpEvcSJ7h6SO7RYrj1Nb2mISkdD9rrtrWrIOmWSkU4tHT1zh75Y46DEPbh4RmOamNdL/Tfa8tGSMkNT1oUp26+pZ+lzjFdB9JY8cQ1oYKySkLNmLTzqMi5l1zv8ioQlLXhw3Zf/T0NfQbs1B9r+srJJ+8eIMhk/6KtmUY1dmuaU3Q7BslXe8++k3yMNJ/01gpki+nGHe0E4S2JD3jKeSJwho4MQFdBKxGSEpTBdri7xp1Gi1usLsn1ogpLV03kxRArG2bmJiGSExCcuGqnVi2Ya9WDw6JmOTJkkRaLWvIUKSFJvRSIg8SLSjq1qaeKK7rASjZQjFYNHVEwpOmjugBSNsT6SMkJeGlaz80inkiLyklig2iL2JpiyLpAUWLRaLuWajZ7umLNmP9jn+jLQSglcuhYUqRlaZtKB7JECEp1as5DSd59BZP7Q8HhUJ4WVOnSh6r2JXsNaeQpHCLToNmCG+xZmiGJisphOD2sVWR4uhovNO4p1W3owe0jTSsyFvWdcgs4XVdM3coShTOE+l3aWFSv85/oGvriDElJck7eHzHXDEFqytJU7iaU3eaeQ0RkrR9EHl7jBWS0or3qEJS2qPWHEJS2j5JW0ystO8sTX/Synxd4oYWexFvfYSkNA6iepqIOcVblqnfS++wCkkgxuTNpnqlkIGY4n7jQ0hKrGmmQZegoTAHWmBnCGtDhSRtiUPsou4mElVISnHJ2jy5FCfZa8Q8SF5ZfYSk9KFEfUJT0CRiM6ZLjW/f/fF7p9F6C0kKUdp54DR2HDgVaQ1BVA+rdB9LH+YsJA15a9tnXqsRktKLSVMkUJfRzVG6bs9IU4q6hCQt8KCFHoZOx8YkJKW4vKjeJOmrNLaHNbWBPAq6Ts25eusR2vWbGsnbousBKG3pIk1hS0NaCtSOKiS1rSiX6r566K9Im13HdHuQJ/TOgxeYtWybCACPbRNq6UVGgnfH8nFaFxpIoQz6Cklp8QnZqWl7bF7M2G57cwlJ8hJ1/nOmWL1L3lGKSdWWBo1fgkMnLqu9W1IeiaHmBwb9Jgk8msJaMWuw1j0cybvRsMMosRAjqjdT8oDeOLIyxhNxpOnGqLsVSPbZupCUBACFRlCIhGaS9vM8+c888VwyRNzoGo/Sh7S2GRmpL2gM0ViK7ZkieTBpjMQUvy0tyoopBESKldW2iFHXYhtDPZJS/LE+K4gNYW2okJTqjhr2EVVIUmhR0ZpdheglEaaZosbt6iMkaXeMvqMWiI8++viTkhS6oa9HUtMOspFmFcbPXSdCaqK+MygvOUjIORFbvHRsz1D+3fYJWI2QlF6QdBoJeUGkJH3VU/wMTdVQ0iYkKWi7QYdRYqr49K4FYg81fVNMQpLqo5cvbcVADxjpaD9pdZ+2h2bU69KiHIo1q1+jbLSpVmmFM01d0AODkvSiihpTJnkTNVeXk7eG9gakl43mwpK8FduLKWnNvQWpbkkAaMbdSPaS6Pn2w18sKiIhU6NiiUhig6Z9yPtJW760+j3iRBBtiYRny16ThE3Ub+Qhlk6vkfLrKyQpHODSjfti2oceiFFXgluikKR2dxw4XXgMZ43pIRYd6ErS+NZcLENtpoUa5AnWjLuTtgSimEhakKYrroniOeu2HS4WoO1bP1XteZT214wag6jNNskTpc0jqjmONKfIdX3gWaNHksYa3bcUb0irrqWjTKUFGXRvHdo0Q8yQGCJudI0Dilul+FXyco0b1EHtUad7icY+fWxoeg7pmUUxehTiEfV4T2lmRls8oub1pTaS4Iy6nyCNYY+USZEimbs43IDa+7+NM9R2STGkmrHr0jPcUCEpeeSirlAmW6n9JLSkzfANYa3rOaqrD2jbn8ETl0WLGZV4asZmS2E6mvcnzTD93nm0mIE4vGUmMqT10CtGUvIMRxXSUoiKPkKS+vLOw+fq1e1SG6V3m7ZQFgoTIq+kPtvS6fsu5Xy2ScBqhCS9/Nr0mSI8XiQmKR6P4sRoVSolzWkxKeCYPG60DQytsNz77znh/YnqwdHVrbQROG3wTIm8jhTD1qfT76BtJ2hFteYUi/RAogdzpbKFxXnbNOVLD74jW2cjqXvMJ9uQqKNED2Pa1zFH1vRiayP6WiWbaSX338vHqVfsSSKLppgpSP+Dty9a/15NeATphUKilhbAeH/+pt5zkurXFJJSnCKdEkPCkFiSoCNxU7PVECHKaOVppTKFEBIaKvaQo7qlY+OkaXva6iZbprSi/IZ/jojV4Yc2z1Qf56iLL8WB0rQuXYdexlXLFxHb6NCCmIdPvdRbZUT1SJJ9JD7Jq0KeAKpHOhJQ80g76bqWKCRJREp7T5Yr8XMPPMlmmrai0ARK5Dmo1uJPwYnEOW3+TSeTkMCk7W5o+yLxQg0PR4HKEdvn0NjMlD51NPS0G4C0WbvkGSGx0bhuRXFS0Nq/D4vraJsO19aPFLcXEBiMkzvmRvMq27pHknhIK+Ip3qxZ/cpi2xrpiErNDxpDxI2u+4WeYTTjIO0/Wb5UQYQrw8W2ZLSFS9Q9WaVFc9L2XPTM8g8MwoWrd9VxyPosoqD2LFj1j7hHW/9RTWxjQydP0bNA2tuUdpygnSfo+Vcwbw5QfK60DZIphCQxkcYrtafNH9WRzjMVXr5+j+PnbkQ6OtIQ1rqeo9JWOlH7go50pYVFdI/QCWZ01Or1O0/UoT2aQlLyNJK9dJQtTbvT/sfUV5qLv/TxSNIzrlHHUcIcWp1NhxUQb4ozp6SPkCTxSuOH3hn0jkqbOoWIm6WN6el5Qfe85oEC9Hwt26C3UYsHbVMqcatiImDRQpJWDtNLVUoUCzR+zlrxEpUSiSzafFUzYFgSkvRwpRuIEt3QPds1FNtKxLYYhPLTi55e+NpS1JgSetmPnL5SPFw17Vo4qa9eB9/TZsf0tStt0Kx5TXro0NSSpgeVAtPp5BxpY3LKT6vGafPePqPmR4p/obgxH99voj20358kaonL4rW71Cw1p7nIU0WbTUvH60n20DQ9PRRpY2z6nWI3Nc++pr6gqbXSRfPqddd99w/E8g17hVDXrIcKk4htWLOsWLwjeXuiLpyR9gsslDenOMFD27nBVIY23jVkAYym8VGntqVdArR57WjRV5hSGWtMrCTidUGKemYyhUnQ5sCaZ3PTS3v66O7qTbzJS5m/csTGzbpS1ClK6UUq5Ze2z9F3A2tpX9eVswdH63Npf1XNaTFdHklppbjmiT7a2qCLPc02lKrbU+zfSV45KUmeLM0XvDa7ovaxNKWrGa6irRx5w+jAAxLNmgwpZlVzL1HplCvNBXOUX/I264ozjcqAxgF5/CWRJv1OY3For5aR9v0kwULChTxKURN9YNMMiOZG1rrGDLVx+96TmLvi70j3KH2Q0L1OU/f0LOk5Yq4QudKzlmJ+6RlBH4fSsY1SbO7Yge3EQjfNFNN9JeUjXjTmNM+SpzFL4kpatWwIa13P0ai7b2jaSfdg92Fz1TbQ9emjj/aWjHqKEHlKaYGL5rONZhYoHEIKZdJ3rEk7LUi2kLBvUreCGHu0Ap5iLinpusfoXqBFbZrvTspPe2GOHRgxO6WZaI9O+hihttEznxMTiImARQrJ2LqMbkyKD0mZPKnWTZM1byYKuKf86dKk0ktAxnbtmH4nQekl7HIXJzoYmuihTds60BcviSSPFMlitJm+Gt9/+iyuJZ3kQoKCPKK03QO1OTZvKL2EKWibFlZEjdMke95/9BXeLtoEN+ppNeT0jaToAAAgAElEQVQlJq8g2UuLiqg/9BHp2rjQFDy9KOk4rtQeyWNdTW0oW1vIT2OZppRp6w5jN5iOyoH6+NXbT+LIRvpoM+SYQ+mMePKSkmfU2L639r6h+5AY0gIzeiHThv3mTLSPI80AUMqYNnWMZ8DTPfrl2w/4fP4q8tFiM13x2DHZTPXQDEdQcLBYrBb1WSCNI8hkyEQMFAqzIaBnBcVm0rQ6nR9uyJjVZpS252hMxkvP2HCVSnj+Y+pvyvvugw8CgoLF5uzSEbrGwKFn9et33nB1dUbm9GmMut+on2iLNXon0mb+tB2ctmdC8x4TxKyYPrNLxrSFy9gWAasUkrF1QUxbIMRWln9nAkxAfwLSYrOYtojRvzbOyQSYQEITkMIINE/gSWib+PqWTYCFpGX3D1vHBCyaAHmraWsaWnyhb2ylRTeIjWMCdkxACj+g+Ou184Yb5fW0Y3x223SbFJK0iu5HQKBRZx7b7UjghjMBIwlQmMnVW4+RLKmbiGnlxASYgHUSoA3T/X4EoETh3GJVOScmoA8BmxSS+jSc8zABJsAEmAATYAJMgAnEjQALybjx49JMgAkwASbABJgAE7BbAiwk7bbrueFMgAkwASbABJgAE4gbARaScePHpZkAE2ACTIAJMAEmYLcEWEjabddzw5kAE2ACTIAJMAEmEDcCLCTjxo9LMwEmwASYABNgAkzAbgmwkLTbrueGMwEmwASYABNgAkwgbgRYSMaNH5dmAkyACTABJsAEmIDdEmAhabddzw1nAkyACTABJsAEmEDcCLCQjBs/Ls0EmAATYAJMgAkwAbslwELSbrueG84EmAATYAJMgAkwgbgRYCEZN35cmgkwASbABJgAE2ACdkuAhaTddj03nAkwASbABJgAE2ACcSPAQjJu/Lg0E2ACTIAJMAEmwATslgALSbvtem44E2ACTIAJMAEmwATiRoCFZNz4cWkmwASYABNgAkyACdgtARaSdtv13HAmwASYABNgAkyACcSNAAvJuPHj0kyACTABJsAEmAATsFsCLCTttuu54UyACTABJsAEmAATiBsBFpJx48elmQATYAJMgAkwASZgtwRYSNpt13PDmQATYAJMgAkwASYQNwIsJOPGj0szASbABJgAE2ACTMBuCbCQtNuu54YzASbABJgAE2ACTCBuBFhIxo0fl2YCTIAJMAEmwASYgN0SYCFpt13PDWcCTIAJMAEmwASYQNwIsJCMGz8uzQSYABNgAkyACTABuyXAQtJuu54bzgSYABNgAkyACTCBuBFgIRk3flyaCTABJsAEmAATYAJ2S4CFpN12PTecCTABJsAEmAATYAJxI8BCMm78uDQTYAJMgAkwASbABOyWAAtJu+16bjgTYAJMgAkwASbABOJGgIVk3PhxaSbABJgAE2ACTIAJ2C0BFpJ22/XccCbABJgAE2ACTIAJxI0AC8m48ePSTIAJMAEmwASYABOwWwIsJO2267nhTIAJMAEmwASYABOIGwEWknHjx6WZABNgAkyACTABJmC3BFhI2m3Xc8OZABNgAkyACTABJhA3Aiwk48aPSzMBJsAEmAATYAJMwG4JsJC0267nhjMBJsAEmAATYAJMIG4EWEjGjR+XZgJMgAkwASbABJiA3RJgIWm3Xc8NZwJMgAkwASbABJhA3AiwkIwbPy7NBJgAE2ACTIAJMAG7JcBC0m67nhvOBJgAE2ACTIAJMIG4EWAhGTd+XJoJMAEmwASYABNgAnZLgIWk3XY9N5wJMAEmwASYABNgAnEjwEIybvy4NBNgAkyACTABJsAE7JYAC0m77XpuOBOwYAJKJcI/vIHy03uofD4g3Ncb4V8+Q/XtC1Tfv0Hl/wOqQH+ogoOA0GCoQkJEY/5MeyJao9J5yuCWCEjsJoN7EiBpUhlSJANSppDBIyWQKqXMgkGwaUyACTAByybAQtKy+4etYwI2TyDc+wOUzx9B6fUEylfPoXzzEuHvXhnVbm1CUp+KUiSXIUdWGTKkkyFTBhkyZ5QhSWJ9SnIeJsAEmIB9E2Ahad/9z61nAvFOQPnyCcLu30TYo9tQPr6H8M+fTGaDsUJSmwEeKWXImT1CYObKIYNnavZcmqyjuCImwARshgALSZvpSm4IE7BMAjQNHXrjAsJuXULY7asI/+JjNkNNKSSjGumRSoZfc8mQN48M+fPI4ehotmZwxUyACTABqyHAQtJquooNZQLWQ0Dl9xWhl08h9PIZhN68GG+Gm1NIRm1E4fxyFCogQ9ECcri4xFsT+UJMgAkwAYsiwELSorqDjWEC1k0g9PwxhJw7itArZxKkIfEpJDUbWKywHCWKyFCkgDxB2s0XZQJMgAkkFAEWkglFnq/LBGyEAC2OCTlxACGnDkHl9yVBW5VQQlJqdCJXoEJZOcqWlHNMZYKOBL44E2AC8UWAhWR8kebrMAEbIxB6/QJCju5B6NWzFtOyhBaSmiBo6vu3snLkz8OLdCxmgLAhTIAJmJwAC0mTI+UKmYBtEwg5fQjBh/6B8ukDi2uoJQlJCU76tDLUrCJH6eI87W1xA4YNMorAZ18Vzl0ON6hs/ZoKg/JzZushwELSevqKLWUCCUog5Ph+BB/YBuXrFwlqR0wXt0QhKdlLG6NXryRHuVIsKC12ALFhehEgITl0fJheeSkTbf4/fayD3vljyvjNzx/hqnAkc08MmSx2b/+L1x/g7fMFJQrngTI8HCEhoXB1cVZf4v3Hz7h88yGyZPREwV+zm8RGqZKg4BAo5LTDg2nablLjTFgZC0kTwuSqmIAtEgg5ewTBuzdC+eqZxTfPkoWkBI82Pa9VVY6SRVlQWvyAYgO1EohvIUkCcPveE1iybg98v/gJm9wSuaB5wyoY2LVJjL20fse/OHn+BlbPGYoL1+6h86CZOLd3kRCiOw+ewegZq1CxTCHkz5MN3dvUN2mPt+49GQV+zY4hPZubtF5Lq4yFpKX1CNvDBCyEQNjtKwjauU5sHm4tyRqEpMSSNjmvV12BPL/E7lWxFv5sp30QiG8huWLTftA/4/7sgIqlCyIoKAQXbzzArKXbcPzvOXoLyR/+gfB6+xG5s2eEQqFA+/7TULNSCTRvUNksHUfeUFdnJ3imTmGW+i2lUhaSltITbAcTsBAC4Z/eI2j7SoScPmwhFulvhjUJSalVFDvZsLZcTP9xYgLWQCA+haTfd3+UrtcLYwa2Q7P6lSLhoaljF2cnbNjxL9ZsO4SP3r5IkdwdLRpURo92DcTUt6ZH8rnXOwyfugKbl4zG0nV7xD8Z0nkI7+S4Qe2R3jMVpi/egiOnryKxWyI0qVsBXVvXFaJz35HzuHXvmfAw7j9yATmzpUejWuUxfMpy1K1aGpt3HxO2dWpeG03/s3PGkq3IkSU9fq9dHldvPcKEuevw4ZOvyEde0FH92sA9iZs1dHmMNrKQtPou5AYwAdMRCN6zCYFblgPhStNVGo81WaOQlPA0aaBAjco83R2Pw4UvZSSB+BSSN+8+Ravek3B61wKkTO6u1WISfg4KhRCFb955o/fI+VgybQAqlCoYSUjee/wSTbuOw+1jq+D15iOa95iAbq3roWDeHPglRyZMmL0Wj56/xqBuTfH5y3dMW7QJ/To3Rqvfq2LttkOYuXQrCufLicrliggvY8a0HqKOymWLoGn9iuLak+ZvwIV9i4VA7DViHgrkyY5ubeqBrv30xVvkzpEJgYHBGDNrNSqWKRzr1LyRXRSvxVhIxituvhgTsEwCYQ9vIWjDEoQ9uWeZBupplTULSWpipgwytG6iQLYs7J3Us8s5WwIQiE8hefjkFQwctxh3jq+BXK77vnj68i3uP/aC9+evWLv9ELq0rIO2TWroFJLkZSxRuztmj+2J8iULICAwCMVrdcfMMT1Qu3JJQZW8kxev38euVROFkPz31BVsXDRKbcedB8+FkLx7Yo164U/5Rn0xcXBH4XHUFJJU3yefr7hx9wk++nzB0dNXkSRxIiye0j8BetC0l2QhaVqeXBsTsDoCQVuXI2jnequzW5vB1i4kpTbVr6VA/ZrsnbSJQWmDjYhPISl5JE/smIfUqZJppTllwUZs2nkUVcsXReaMnmLquU3jaujQrJbeQpLiGeu2GYaDG6cjc4Y04jpUD01HXz64TAjJc1fuYMWswWobtAnJOm2GoVeHRkKMagrJg8cvYfCEpSheKDfy5MiEB09fiWn5ZdMHWv0IYSFp9V3IDWACxhFQPn+IwNVzEfbYur2Qmq23FSFJbcqVXYZWjRVIn469k8aNcC5lLgLxKSSlGMlhvVuiTePqkZpEXkRaeENewLXzhgmRRqn70DkoWSSPQUKSthUqU78XlkztjwqlC4l6Fq7eiUMnLuPAhmlxFpL1249ArUolRewmpdVb/4fLNx6wkDTXIOV6mQATMC+B4P/tQOCaeea9SALUbktCUsLXtpkCv5Vh72QCDCe+pA4C8SkkyQRaFLNozS5MHNIJVcsXQVBwKC7duA9azEIexFJ1emDC4I6oXqEYrt1+jCGTlgnBZohHkq5D2/UkcnXB2EHt8PXbdwwcvwQ1KpYQcYxx9UhS3Tmyphd1vX73CRPmrkfypElYSPJdxgSYgJURCAtDwF/TEXLqf1ZmuH7m2qKQpJZXKCNHm2Z8Moh+o4BzmZtAfAtJpVKJDTuOYMm63fAPCBLN09xHkrx7s5dtE3/PniUdgkNC0aJBFbRvVlOs6D7x3z6SFEPZpOtYsdhGipGcM64XypXIL8rSApw+o+bj2ct34v9pEc2UEV2QxM0V67bT1PY9LJ85SI337sMXaNZ9fKQYSZra7t2hEWpVLok+Ixcgf56s6Nq6Hs5fuYuhU5aLfTDJ9lzZMsI9cSKxKMjaE09tW3sPsv1MQE8CypdPELBkCujftppsVUhGvCBl6NBKAc/UPNVtq+PXWtoV30JSkwsJsTBlOFKlSBpp8Q0JzO8/AkyyZyMtinFxdjT51jwkiN9/9BU2OjjYzochC0lruXPZTiYQBwKhF04gYPFEqEJC4lCL5Re1ZSEZ4YUBOrV2QIG8LCYtfzTaroV81rbt9q0xLWMhaQw1LsMErIhA8N4tCNy42IosNt5UWxeSEpmWjRWoXJ7jJo0fKVySCTABUxFgIWkqklwPE7BAAoHrFiL4QETskD0kexGS1Jd1qsvRqI7tTI/Zw/jkNjIBWyTAQtIWe5XbxAQABCyahJDTh+yKhT0JSepYXoRjV8ObG8sELJIAC0mL7BY2ignEjYD/zOEIvXImbpVYYWl7E5LURSWKyNG1HXsmrXC4sslMwCYIsJC0iW7kRjCB/wgow/Bj+lCE3bxkl0jsUUhSRxcuIEevTiwm7XLQc6OZQAITYCGZwB3Al2cCJiOgVOLH1D8RdvuKyaq0torsVUhSP+X/VYZ+3RysrcvYXibABKycAAtJK+9ANp8JSAT8p/6J0BsX7RqIPQtJ9kza9dCP18aHe39AyMmDBl3TpUlHg/JzZushwELSevqKLWUCOgn4zx6J0Eun7J6QvQtJGgDFC8vRrT1Pc9v9zWBGACQk/Xo11vsKcg9PuC/eoXd+zmhdBFhIWld/sbVMIBqBgKVTEXLiAJMBwEIyYhhUKCtHm6YsJvmmMA+B+BKS3/0DxTnautKofm3QolEV8zSSa9WbAAtJvVFxRiZgeQQCNy1F8J5NZjFMCYC2vDbFGSoqAOEAtEmbYBVAv7uY4EIsJH8OBd5n0iy3BVdK93I8eSTDw1XwevtRzbxum2EY2a81ShfLJ/6WMlkSkx9jyB1sOAEWkoYz4xJMwCIIBB/8G4Fr55vFliAV0PubC5q4hqGGc5j6GqdCFFjk7xTtmhuTBcI5BiF4KNgBmwIdsSFZYKSy/wQ5YHeQo/hbdecwtHENFf/9JVyGHt9csDBpEDzkJDP1SywkI3Nq1ViBSnwCjn6Dh3PpTSC+hGRUg0rU7o6pI7qiSrki4qd3Hz9j6oJNuHTjPgr+mh1N6lVE9QrF8fTlW4ycthJ9Ov6OciXyi7xL1u7GyzcfMG1EN2zaeQRrth3CR29fpEjujhYNKqNHuwaQyWR4884bUxdtwpWbD+Hs7ITSRX/FpKGd4eTIC9l0DRAWknrfOpyRCVgOgdCrZ+E/Y5hZDFrs74STIRG+w86JQiMJSfr7Mn8nzHAPjnTtjIpwrZ7LN0oZRn53RoBKJjyOmkKS5GGrr66YkDgYrjIV+vu5YHPyQJCsJBvII9rXzbCzwVlIRh8Sfbvy2dxmuVHsuFJLEJJhYUo06DASBfPmQJs/quHl6w/4c8JS/Lt1FtJ7psL8lf8Iwbh//TQ8eOqFnsPmYs/ayciRJT2OnL4KB4UCGdJ5COHYe+R8LJk2ABVKFUTXwbPhoJCjf5fG+PbDHzsPnMao/m3hlsjFjns85qazkOShwQSsjIDy7Uv8GNkdqoAfZrH8W7gMJBMH+bmgtWt0Ibk8wAmbo3gWdRlCYvBzuAynQxTYExTZI/lOKUM/PxchLsmb2fSLK6a5B8NdpkKfby5YnDQIKQ3wRpINLCSj94RbImD4AAd4pjZB7IBZRhxXam0ELEFIXrr+AB0HTsfa+cOQOJGrQDhu9lo0qFEWLRtVhVKpRIcB00HT44+fv8b4PzugVuWSatTktbz/2Aven79i7fZD6NKyDto2qYHWvScjZXJ3jOjXGmlSJbe2rkkQe1lIJgh2vigTMJ7Aj5HdEPbknvEV6Fmy3VcXtIwytU0eSfIWFnJUgia4CzqGo4pzmNbYR83LHA12wLooU9sUM9nyiysmuwcjEVTo+59HkqbOyXvZI1EIfMJlcJUBbjL9prdZSGrv3OxZZEJMcmICpiBgCUJy58EzGD1jFQrnyxmpSZXLFUHH5rXE37zefETt1kNRtnh+LJ85SJ1vyoKN2LTzKKqWL4rMGT2x/8gFtGlcDR2a1cLVW48wZNJfYto7jUcK9GhbX0yZc9JNgIUkjw4mYEUEApbPQMjRvfFisTYheT9MjlMhDkgsU+GDUobLoQqUclJiUCxT0NqEJDViY6AjDgZHCJwqTmGo5RyGgX4uWJY0CCsCHHE7TCGmuBu7hOJ3l5+xmroAsJDUPTT4XO54uW3s4iKWICRPXbyFwROW4vzexXBw0L5DAcVJ3rz3VEx7r5k7FCUK54HvFz+Ub9QXa+cNQ/FCuUV/dR86ByWL5BFCkpIyPBxerz/gyOlrWLDqH+zfMA1ZM3raRd8a00gWksZQ4zJMIAEIkIAkIRlfSZuQjHrt/UERnsatyQNj9ErqEpJU3w+VTKzopintaT+ckFquEqKxyzcXrE8WiIdhCiz0d8TqZEGxNp2FZMyI2jZT4LcytBafExMwnoAlCEm/7/6o2mwQGtQoh76d/xAx2rRAJkypRLXfiuGfA6cxffFmESO5be9xbN93Ev+smABXV2expdCEwR1RvUIxXLv9GEMmLROLbUhIzliyFU3qVkCWjJ64/8QLTbuOw44V45EnZ2bjgdl4SRaSNt7B3DzbIHD7/ROEj++HLL5+8dYgfYTkxRAFZvs7IbZV2zEJSalBr5RyDPFzxopkQXgcJhf1Uizmx3CZWEFOopKmuWNKLCRjHx7jhzogfTqOl4ydFOfQRcAShCTZdvPuU4yZtRrPXr4TptKCGFrVnTGtBxp1Gq1eQEMLc9r2nQInJ0esnjNUxETOXrZNlMmeJR2CQ0LRokEVtG9WE31GLsDxc9fFbzS13apRFXRqWYcHQwwEWEjy8GACVkDgt0e7cTPAB3Mf++KPf8w7tU0TyEoV0JW2/3EJQzXnMDjJIvaT/DvIAdkVKuRxUOKbSobJ353hKFNhzn+ruDcHOuJCiEJs20OJIhtDVMDxEAfQbyuTBkIhA7RF60347oysDuFiCyA/lQydvroIL+TDMDn+8nfESvZImmSk5sohw5A+HC9pEph2WklCCUlduMk7GRqmRIpkScQWPvok/4AgfP8RAM/UKaJlDwoOgd/3AKROlUyfquw+DwtJux8CDMDSCYx/fxXj3l1Rm9klOBGmLVwNuZKiB02fxn53BsVCaqbZ7sHIpAjH0gAnHA/+GY/kKVdheOJgpFNELIahhTJnQxRiqpvSc6UcQ/2cI9VFC3RGJY68fdALpRzD/ZyxRsPrSIt6zoUqxJR5K9dQ1NTYz1JXq9kjqd94qF9Lgfo1eYpbP1qcKyoBPmubx4QmARaSPB6YgAUTuOD/AWUe7opmYX6HxJh16g5KnD0f79bTSTS0mjqxDEhq4PY8hhpL8ZPOMpXYW1KfxEJSH0oReUYMcEC2LPp5b/SvlXMyASZgbwRYSNpbj3N7rYpA2Ue7cP7HB502T/SWoffqjVbVJnMay0JSf7o5s8kwtB9PcetPjHMyASagjQALSR4XTMBCCcz4cAND316M1bq6cMf0LQeQ7tWrWPPaegYWkob1cJMGCtSozFPchlHj3EyACWgSYCHJ44EJWCCB58F+yHVvM5Qq/TbiTqlwxux7H9FgzwELbE38mcRC0jDWtC5h2lgHpEzOU9yGkePcTIAJSARYSPJYYAIWSKD1i6PY5PvEYMt6Brpi8oKVBpezlQIsJA3vyTIl5OjYSvuGzobXxiWYABOwNwIsJO2tx7m9Fk/gkN8r1HpivGexiCIJZh67hiKXfq70tvhGm8hAFpLGgRzUywF5crFX0jh6XIoJ2DcBFpL23f/cegskENsCG31NnvYhHN3WbdE3u03kYyFpXDfy3pLGcbPXUl4h37HW55FBzR+brphB+Tmz9RBgIWk9fcWW2gGBtZ8focPL4yZraSOVO6Zv3A2Pd+9NVqclV8RC0vje6dJWgZJFeeGN8QTtpyQJySx39N8tIrNTErzM39p+AGlp6dEz11Dw1+zwSGl7m5yzkLTroc2NtzQCee5twcOgryY1y1Phgtm336L2/kMmrdcSKzOlkJTLAc/UMoSEAj6f9Vv0pA8TZ2cgY3oZ3r5TIVDj+PAUyWX4+k2FcDp4PAFShnQyjBvK2wElAHqru2R8C8nKTQbio7cvVs4ejNJF8wpepy7ewvjZ63D87zlm4dey50SkTZMSs8f2VNd//c5jtOkzBbvXTELOrBkMum6J2t0xb3xvlCmez6By1pCZhaQ19BLbaBcElnrfQ89Xp83W1n7+Lhi3aJXZ6reEik0lJGlLnMb1FZBOWwsIBDbvUOLi1QiV93tdBWpXi+696zMsFIERh/pES3lzy9C9gwNcXSJ+unw9HMvXRZxONGW0AzxSyoSI3HtIiQP/RlynTnU56tVQoMefodBzAX+cuqF9CwXKlWKvZJwg2kHhhBCSoWFhSJcmJbYuHSOOQTS3kHzwxAuNu4xVi1c6r/v3zqNRsXQhDOzW1OBeZiFpMDIuwASYgKEEct7djKfB3wwtZlD+kgp3zDx8Efmv3TConLVkNpWQrFZRjjSpZTh0LBxuiYB+3RzEWeMDRoUKFH/UU6BmFTnmLqWTyX+mB49VWgVf5owyjP7TAb5fVDh4NBxXb4TDzU2Gj59UyP+rDH27OqDXkFA0b6RAkYJy9B8RCvKILpruiKOnwrFzv3mOw4zar+k8ZZgwnL2S1jLeE8rOhBCSPds3wNiZa7Bwcl9ULlskmpC8eusRZi7dihev3qPqb8XQsmEV5MudFfuOnMf5K3cxdURXgWv2sm1IkdwdHZrVEv/fvv809O/cGIXy5YiGc+rCTTh7+Q52rZ6ELbuOYuWWgzi8eQYSubrg5PmbmLN8O569fIeiBXJhVP+2yJUtwktJ3syurevh9MVbePj0FSYN7YTmPSaoPZK+X/wwbMoKlC2eF+2a1kyobjTZddkjaTKUXBETMJ7ASp8H6OJ10vgKDCw5+10YOm7YZmApy89uKiEZtaWtmypQsawc3QeFIizsp5Ds0j9CWMaWRg92QKb0MuFZpPKaieouVUyO3kNCUb6UHG2bK0D1ktezagW5EJjx4Y2UbOrUWoHSxdkrGVuf2vPvCSEkxw5qh7sPX+DwyctC2JHAk6a2X7/7hJoth2BQ92b4rVQBHD55Bf8cOI1j22fjxt0nYjr62qHlkMllKFK9C9J4pBC/vX3vgxotB+Pc3kVI5p44Wpf6ffdH1WaDULdqaWzbewKLJvdDpbKF8fTlWzRoP1KIxfIl82PTzqO4fPMh/t0yE64uzshbsb2oq23j6mJ6vHqF4qjffoQQkiRu2/WfhmyZ0mLGqG5QKKx/6y0Wkvb8NOC2WwyBQve341bg53i1p2l4EkxfswPJfHzi9brmvJi5hOS0MQ5wTyJDz8E/PZK1qsrh/VklhCF5Iv/eo0SoDl25bLYjlOFAUBDg4gJ8+arCqo1KvPBSoVB+OXp1ipi+Jo9kscJyDBodisUzHLHvcMQ0d+6cMjx9EXEtc6esmWUYOZC9kubmbM31J5SQLJw3hxB24wa1h5ubq1pILlm7GweOXcSsMT0E1pDQMOEV3LFiPLJnSY/C1Tpj46KR+OEfiL827MPj56+xbv5wvHr7Ccs27MWuVRN1dgd5NIdNXi68oOQNpbRw1U7sP3YBhzfPFP9PHsbyjfqqhSYJyb9mDEK5EvnV9dLUNnkm1247hNSpkgtbHRysX0RSA1lIWvPdzLbbBIFdX1/g92cJsxAmo4MrZl/zQrVDR2yCpTmEpOSNJKF4+HhE7CJ57CqVlyMgAEiZAkibRoa371UYO0270ls531HkvXQ9XIjNCmXlIEdEv+GhCAkBZk1wRJLEEDGZJBwpjrJsKTnGTA3DxBEOIq9cBmz8W4nT582/Goem8mnKnRMT0EYgoYRkhVIFsWrzAWzffxKDuzfHlIWbxGKb4VOW4+yVu8icPk0kc3t1aCgW53QdPBuli/2K128/IVf2jHjy/I2Y3vYPCIKDQh5jzKNKpUK+Sh0wf2IfVC1fVNRPwpLuVWm6nP5GC4K6tKqDFg2rCI/kpkWjIk2Xk5CkRNf836bpyBTFVmseaSwkrZyaungAACAASURBVLn32HabIECbj9Mm5AmZ/vRzwsilaxLSBJNc29RCkha7NKqjwIUr4cKDqCtJi1TIq6jNK0lC8uCRn7GOv/4iw8CeDli6WolrtyKEIa3k/uQTsWqbYiN37FXCLZEMVStGTHvTpuEkNsdNN79bsjB5STvbhrfEJAOLK4lEICGFZEBgECr+0V9spfPM670QknP+2o5nXu+weEp/rT21Ztv/cOn6A9Cq633rp+K51ztMmrcBid1c0btDI5QvWSDGHiYRSKKxSrkiIh/FYp6/ek/tySRxSHnmjOuFGhWL6xSS9auXxftPn/Hy9QdsWjxK63S6NQ41FpLW2Gtss80QuBXog0L3/7aI9pSTu2PmgbPIffuORdhjjBGmFJLNf4+IUSQP4PptMS92qVNNjkZ1Feg7PFR4HqOmJTMd8fCJCguWR4jAgvnk6NNFIcQpiVTN1K6FAkULyEVdf/Z2QIrkwIiJYWjZWIGyJeXo9d/0ujF8DCkzaaSD2P6IExOISiAhhSTZsmXXMUyav0HEOpKQpDjI1r0nC7FXq1IJfPvujyOnrqJ44dzIkSW9iK1s1n28EJ+bl4wGrcAuU7+X8A5e3L8ESRInMkhIXrx+H50GzhDT02WL58P6Hf9i6bo9OLVzPlKlSKpTSFKMZJH8udBx4HRxvVVzhoiYSmtPLCStvQfZfqsmMOD1Ocz7dNti2qCQyTDXKwhttuywGJsMMcRUQpLEHC18uXEnHEdP/hR6Hz6p8M0P6NFRgcfPVLh8LRypU8kwoKcDwpUQ4o/SzAkO8PMDJs6KEI60KpumimcsDMPXr0C/7gqk8ZBhwMhQ/PD/2UKa0p4/1REbtytx+kI46tWUo2YVBfoMDcXg3g6gPSgnzDS/R5IsohhQWp3OiQlYmpAMDgkVsZKODg7qfSR3HjyDaYs2CXFIKUtGTyydNkBMISuVSpSu1wt9Ov6ONo2ri9/HzFyNR89eY9uysbF2cFSPJBWg2EqKlaTklsgF00Z2FXGUlHRNbdP0OE21f/X7gVa9JiFjutRYPLU/FLRFgxUnFpJW3HlsuvUTSHlrNXzDgi2uIa3CEmP6yi1wI9VkRclUQpK2wKGtcKKmsxfDsXaLEiMGOiBb5p+/BwUD85eF4cnziI3Ll85yxI8AFQaPiRB9JBDHDyPvYkQZmr5et1WJc5cieyNpxXS+3HL1NkNJ3amco9iCSKkEVm9WCvEaHylZUhlmTeBFN/HB2tquEd8eSX35UDzj5y9+cHKkxXFu+hYzOl9QcAh8fL8hbeoUNrH62lgQLCSNJcflmEAcCWzxfYKWL47GsRbzFc/m4IbZl56g4tET5ruIiWs2lZDUx6xEiYD0aWX49g0itlGfREIymTvw4pX2/SZ11UF7WtKek/GdenZSoEgB6/aWxDcze7gen7VtD72sfxtZSOrPinMyAZMSaPDsf9j79aVJ6zRHZcO/OmDIX+vMUbXJ64xPIWly4y2wQhKRJCY5MQEmwAR0EWAhyWODCSQAAe+wQKS+tTYBrmzcJSvJ3TFj9wnkePDQuAriqRQLSdODphXktPclJybABJiANgIsJHlcMIEEILDc5z66eZ1KgCsbf0kXmQJzn/9A8+0RAeaWmFhImr5XOrRSoGwJnt42PVmukQnYBgEWkrbRj9wKKyNQ5+kBHPyWsHtHGousfYgbpi3bAOfAQGOrMFs5FpKmR8t7SpqeKdfIBGyJAAtJW+pNbotVEPBThiDpzVVWYasuI39xSIzZ5+6j7MkzFtUOFpLm6Q5ahe7oaJ66uVYmwASsmwALSevuP7beCgls//IUzZ7bxpGEY3wVGLBivcX0AgtJ83QFr942D1eulQnYAgEWkrbQi9wGqyLQyesEVvtY9qIVQ4BWl7ljxo4jyPz0qSHFzJKXhaRZsKJCGTnaNOPV2+aha321BnxW4eU5w/Yz/bU+jx/r62n9LGYhqR8nzsUETEYgy52NoH3YbCklkTti7mNf/PHP3gRtFgtJ8+D3SCnD1DG8Obl56FpfrSQkDw7V/4SlRCllqD3d9OPH77s/zl25i5qVSkAmM/w4TzoqMUyphIuzU7ROCA9X4fDJy+IIxPjY3Nz6RsFPi1lIWnPvse1WR+B+0BfkvbfV6uzW1+AuwYkwbeFqyOkYlgRILCTNB53P3jYfW2urOb6FZOUmA/HR2zcSpny5s2LMwHZo2nUcbh9bZdTJMovW7MKxs9exa9XEaF0QGhqGQtU6Y8eK8ciTM7O1dVG82stCMl5x88XsncAy73vo8eq0TWPI75AYs07dQYmz5+O9nSwkzYe8bTMFfivD2wCZj7D11JwQQrJloyqoUr6oGpKzkyO+fPseJyH5yecrvv8IQPYs6VhIxmH4sZCMAzwuygQMJdDmxTFs9H1saDGrzD/RW4beqzfGq+0sJM2Hu0xxOTq25jg38xG2npoTQkj279IY9auXiQTp3uOXkYTkc693mDR/Ay5dfyDEYZ+Ov6Pab8VEmemLNiNT+jT49t0f56/eRfOGVQCVCtduP8boAW1FngvX7mHqwk149vIdCv6aHbfuP1N7JDfs+Bdrth0SntEUyd3RokFl9GjXwKgpdevpaf0sZSGpHyfOxQRMQiDn3c14GvzNJHVZQyV14Y7pWw4g3av42TOThaT5RkUaDxkmjzJ9nJv5LOaazUUgIYRk4Xw5UDBvDnWTSFS+/eCjFpKhYUrUbj0M+XNnRdsmNXDp+n0sXrtbLQR7DpuLUxdviXhKqofy3Xn4AifP38DqOUPx5p03arQcjIY1y6FJ3Yp49+kzBk9Yqi5/5PRVOCgUyJDOQ+TtPXI+lkwbgAqlCpoLs9XUy0LSarqKDbV2Ah9DA+F523qORTQV75QKZ8y59xH19xwwVZU662EhaV7EcyY5wj2Jea/BtVs+gYQQkknd3ZDB00MNZ0TfVvDVmNomL2SXwbNw/O85SOORQuSr334EypUogCE9m4OEZK7sGUGeTSmt3/GvWkj+tWEfNu48gtM75wsvo7YYyacv3+L+Yy94f/6KtdsPoUvLOkK02ntiIWnvI4DbH28E6CQbOtHGXlPPQFdMXrDSrM1nIWlWvOjXzQH5fzV8dax5reLa45tAQgjJ2Ka2dx86h3krd+DMrgVqHGNnrRExkHPG9RJCskiBXOjcso5WITl6xioEh4Rixqju4veoQnLKgo3YtPMoqpYviswZPbH/yAW0aVwNHZrVim/8Fnc9FpIW1yVskK0SmPLhOka+vWSrzdOrXUUUSTDz2DUUuXRFr/yGZmIhaSgxw/L/XleB2tV4wY1h1GwvtyUKyTOX7qDXiHk4v3cxyHtJqWXPicj7S1aM7Nc6ViG5/u/DOHTiMjYvGR1NSKZJlRzlG/XF2nnDULxQbvF796FzULJIHhaSAFhI2t49zi2yUAItXhzBVt+E37TbEvBM+xCObuu2mNwUFpImRxqpwhJF5OjajhfcmJey5dduiULyu38gqjf/E80bVBZex8s3H6Lf6IXqOMbYPJKPnr3G751GY/rIbihROA/2HTmPOX9tFzGSGdKlRqk6PTBhcEdUr1BMLNAZMmmZWGzDHkkWkpZ/x7KFNkOgwP3tuBP4Wa/2yJThUCnM7/lxDAhBmKsjVEZs5qtXQ2LI1Ejljukbd8Pj3fu4VqUuz0LSZCi1VpQhnQzjhvKCG/NStvzaLUVIUrxik65j1ftI0mIaWiDjHxAU4TVsW1+s3KZEQrJogVzopDG1TSuxT/y32IY2IB825S8cOHpR5K9YphBOnr+Jnasm4pfsGbF66/8we9k28RutCKdp8BYNqqB9s5qW32FmtpA9kmYGzNUzAYmA4/W/EKaK/Vgxt0/fUXrOEZwfXB0BKRNHAygPU6LUvGNQhCpxZrj2+JzEH/1Qau7RaGVVchmOTWkk/l54zTkkf+aDcAc5HvxRBB/zpxd/T3PnLX7ZcxOnR9YBzBwO56lwwezbb1F7/yGTDBQWkibBqLMSuRxYPtfRvBfh2i2eQHwLSUOAKMPD8eGTL1Imc4eLS/QTa2Kr6/MXPzg6KLSeZkMClWIuPVNHLObhFEGAhSSPBCYQDwSeB/sh+91NsV6p7IzDcPX1F/m0CkkVUHjtOaR89BHBSV11Ckm5MhyJfH5Eul6Wk49EuVNj6iLJu28oseg4TkxsgPSXXiDdVS9c6luZHggoN+0QntbIi/dFMsVqr6ky9PN3wbhFq+JcHQvJOCOMtQI6KpGOTORkvwT4rG377XttLWchyeOBCcQDgaN+b1Dtyb5Yr+TyJQCuX/xRdPkZrUIy54E78Lz5Gh+KZBL/1uWRjHohh8BQVJi4H4/rFcTr0tmQ8fwzZDz3TFwjxTNvFF51Vngq015/hRyH7+HMsFpm90ZGtbGkwh0zD19E/ms3YuWkKwMLSaPR6V1wUC8H5MnFQlJvYJyRCdg4ARaSNt7B3DzLILDK5wE6e53UyxjXLwEoO/1QNCGZ7upL5N59CxcGVkWa22+Q8cJzvYXkL/tuwfPGa5weVQc0ve3+5guKLzmJ45MaIgN5JK+8xOXelVB+ykE8alBITHO7ffJDQKokIn98ptnvwtBxQ0QskqGJhaShxAzP376FAuVKmT9+13DLuAQTYAIJQYCFZEJQ52vaHYFx765g/PurerVbm5BM/twHRVaewbUu5fE1ayrQNLW+QtLZLxDlp/wP95oW+zldrQKKLz2JxB/8IAtX4f4fRaAIDUPmU09wpVdFlFxwHIqQMMjDwnGrbSn45kitl+2mytQ0PAmmr9mBZD4+BlXJQtIgXEZlrl9Lgfo1WUgaBY8LMQEbJMBC0gY7lZtkeQS6ep3CCp/7ehmmTUgW2HQJyZ954/MvaUQdSd58RaLPP/CxYAY8qlcQoYl0B5Xn23oFyV/4aJ2udvkagJDELlDJgAoTD+Bus+JwCA5FtiMPhEc01/7bcPYLwp2WJfSy3ZSZMjokwuxrL1Ht0BG9q2UhqTcqozNWKCNHm2a8BZDRALkgE7AxAiwkbaxDuTmWSaDBs/9h79eXehmnTUimvvMWSV/7qsuTh5K8ia/LZMOLKrkR5qx9Ja2b93eUnn0Et1uXwqd86XReP9PZp0h/5SUuDKiKX/beEiL1RoeyYto7y4lHODss4ba4+NPPCSOXrtGLHQtJvTDFKVPh/HL06sxCMk4QuTATsCECLCRtqDO5KZZLoMzDXbjg/yFWA2lLHxdff5SeexSX+lWBv0dihDtEf2lrm9ou9tdpBCZPJKawpVR41TmQ1/HCoGo6r03bCVWYcEA9hU3xlzkP3sW5oTWEqHQIChWeyoRM5eTumHngLHLfvhOjGSwkzd9LObLJMKwf7yVpftJ8BSZgHQRYSFpHP7GVVk4g970teBT0NdZWVBmxS8QsSolE5PFJDaKV0yYky08+iMBUiXG1228iv/vrLyix+ASudy4XY4xj5lOPxeKdy30qi3K0wrvoijOg/SzDXBxwu00pfM2cMlbbzZ1BIZNhjlcQ2m7ZofNSLCTN3QtAOk8ZJgxnIWl+0hZ8BX8f4Okpwwws+Idh+Tm31RBgIWk1XcWGWjOBdLfX4X1ogFU1wel7EEKSuFicza3CEmPayi1I/M0vmm0sJM3fXcmTyTBzPAtJ85O24CuQkPynn/4GuqUC/pivf349cv576gqKFfgFKZK7iyML6XztHFnSIyxMiTClEi7Ohm9GrnlZ2tg8JCQUri7Oelhj31lYSNp3/3Pr44mA+82V+K4Mjaer2f5lsjm4YfalJ6h49ESkxrKQjJ++XzmfT7eJH9IWepV4FJLX7zxGmz5T1CCWTR+I8iULIG/F9li/YIQ49rDXiHkokCc7urWph0VrduHY2evYtWpinOBduHYPnQfNxLm9i5DMPfoJY3Gq3MYKs5C0sQ7l5lgmAcfryxCm+jllbZlWWp9Vw786YMhf69SGs5CMnz5kIRk/nC32KvEoJFUqFd6890bNlkOEOMyRNQPkcplOIfnJ56s4xpDOw45L+uEfCK+3H5E7e0YoFLy4LCaWLCTjMtK4LBPQg4BSpYLD9WV65OQsxhCoRAtxdp9A9gcPwULSGIKGl2EhaTgzmyoRj0KSuH30+YLKjQdg/4ZpyJrRU6DU5ZE8eOyimOoePaAtnr58i+FTlqNu1dLYvPuYKNepeW00rV9J/DdNX6/afABb95zAD/8AVC5bBMP7tBLT5M+93mH41BXYvGQ0FHI5tuw6ho07j8D781dkzpAGvTs0QoXShWyqW41tDAtJY8lxOSagJ4EQVTicr/+lZ27OZgwBF5kCc5//wNUzfYwpzmUMJMBC0kBgtpbdgoXk+h3/4uT5G1g9ZyjuPHiO5j0mCIHYtH5FvHnnjUnzN+DCvsVwT+KGv/edxMylWzG4R3N4pk6BBav+gadHSiyc3Bf3Hr9E067jcPvYKtx58AKtek/C3PG9kDVTWty8+1TEYrZoVMXWetao9rCQNAobF2IC+hMIUSnhfH25/gU4p0EEmn/NhypvciCXy13k9gxBKjdvQHEGKpkjwmVOCIcTwlUR/1aqnBAW7oQw6d9KJ4QqnRCidERI2H//HeqEoDAnBNO/Qx0RHOKEwBAnBIU4ISDYCYHiH0f4BzkiIIjqjt8jJA2CY6bMLCTNBNZaqrUyIXn3xBrIZBH3aflGfTFxcEdULFMILXtORO4cmTBmYDvxG8VW9h21QMRFvv3goxaSl28+FPGSFJ9ZumheOGjZks1aus4cdrKQNAdVrpMJaBAIU4XDkT2SJhsTiVQO6OxdBCVfZUHiR+4I8QPyFL6Lp0Xfodi9AASU8kDOyxWALJehSnkGCLlgsmtrrUjmCJXcWQhXFZyg+k+8KlXOQrgqVY5qARtKIlYtXp0QEhYhYIPDnBASGiFeAzXEqxCtQsBGiFb6Jygk4VdMs5A075Cy+NqtWEjWaTMMvTo0Qu3KJYWoHNi1CRrVKi+Qv//4GVWbDRKxmKFKpVpIhoerMGPJVmzedVTkq1GxOAZ2bYoM6Twsvqviw0AWkvFBma9h9wTk15ZBBV5sY+xA+CUkJVp8zI98L9ND9sAV4cqfNXmk98Zvv07C2Hz9Ue/WJ6TM8Qq+qYHC1xpD4e0EJPEDsp+BKhGJyifGmmA55WRyQBYhWKV/JK+r8j+vq9rzSsI13FF4XYXnlQTrf/+QeJW8ruRtpX8iPK+O/3leyesaIV7DlD/P1nZ0BJbO4lXbljMgEsASGxGSjTqNRrni+TCoezMBUVqpfWLHPHj7flULSWmxjd93f9x+8BzzV+4QWw1NHdE1AeBb3iVZSFpen7BFNkjA7cYKBISH2WDLzNekyv5ZUO99HmR7nhohz3QLlwZ1psLx+yPUKbkIDV6+R9edx3B+nALfZV/w263ecH2R9KeR6Z5DleEMID8LhP08ctJ8rbCRmmUOgDxCuCI8DPIiP1fK20gLuRmGEIhHIUnewDfvP6FWq6HYuWoicsayaltbjKTm1LamR3Lx2t3458BpEfvo6ZEcE+auh4/vN2xdOgb3n3ipheTZK3dBIrJq+aKQy+UYNW0lkronxqj+bQyhZrN5WUjabNdywyyJQOpba+EdFmhJJlmkLS2/5kPlNzmQ+mkKBL//6QXTZWzNOquR+PtpBDm6IVv+Oajg/x1bVu+AT+XkuFLxmShW6mkHJL+TKXoVuS5DleosEHLOIllYrFGOKSAruMJizWPD4oFAPArJmPaR3LBwBIrkz4U+Ixcgf56s6Nq6Hjbs+Bcn/ltsc/fhCzTrPh5RhSStuK5VuSQCAoMwavoqHD55RUDLktETCyf1RbbM6XD/sReadB0rFttcufVIxE76BwSJfGWL58e4P9sjXZqEP/ErHno71kuwkIwVEWdgAnEnkOPuJjwLjn4SS9xrtu4a3MId1fGObo+TiHhHfVP5qgeQJuRvkf1c5upokjLiCLa3KzdBFhiCu4OS4nXSF+Jv+d/XR4aLhbVX7fYdyHEWKjea+n6k7+XtN59rRsjyzrPf9nPLgXgUkvGBm7yNgcEhSJMquc7L0X6Wvl+/I5GrM592E4USC8n4GKV8DbsnUPzBDlwN8LZ7DgQgd0gqtPiYT8Q7qh64QqUR76gvoAIlryGX80J19gUFB2Ka4hfx/w8PHob7s3cISeOM072/IFQV4UXI/K0E8lypAdn3GDydaV9ClfEMoDgLhProa4595UucB7Lck+yrzdzayAT4rG0eERoEWEjycGAC8UCg1pMDOOT3Kh6uZJmXqPJfvGPWZ6kR8jxuCzXSZ3uD0lkmAmHB6sa2KzkHR0LdxP8fuXYVec/fEf/9qlVK3Pvl5wIb9+C0KHGzDRzfucYOKudVqDzIS3k29rz2lCNZCchyDLWnFnNbmQATiIEAC0keHkwgHgi0f3kc6z7b17Rpq6/5UIniHZ+kQPCH2OMd9ekGJ+cQ1KkyGYofXpGy5yv+F3z/82zO9nqOFntPqX+/PMYFnx3eRcpf/l4vJH6cSp9LAon8gZxnoHKjeMoH+pWx5Vwe1SDL3N2WW8htYwJMwAACLCQNgMVZmYCxBEa8vYSpH64bW9wqyiVROaHjp8Jif8dEj5Ig9Lvpza5Tdylc/S5FqvhR6sKolOGnsGn47QuWrN+tzvO1RFJcqBsRK6mZir1sCY8bOQ0z0tMLqoxnAYczQKh9hirI0jUF0kVsl8KJCTABJsBCkscAE4gHAku876LXqzPxcKX4vUSekFRo/iFif0fVAxeows13/Uo1diJl4N5oF9j8ayf86VJC/Xe5CnizZC0Q/nPfzod9kuOFR8Qqbs2U+1M1ZL1UBjBmZ6Yc1yOmvkNp6tuMDTcfUqNqlmXpAaSqalRZLsQEmIDtEWAhaXt9yi2yQAIHv3mhztODFmiZ4SZV8c+Keu/yIOtzjzjHO+p79aJlzyOrQvsxk4OKT8YWZeRp6me798P19U+PYbizHKdHhiAQ0ZeFp/2RFwWuNYTc18gTY1wCgVxnoEpMU9/39G2S1eaT5RoDuBe0WvvZcCbABExLgIWkaXlybUxAK4GHQV+R594Wq6XT6kt+VHqTPWJ/RxPFO+oLI1ueZyjiMVFn9ooll+BxqCLS72cuXkD2Kw8j/e1do5S4VVj7yTbOysQoe6srnL2S6GuW9nxpXkOV6QzgQKu+P8atLgstLcu/GHD2tFDr2CwmwATimwALyfgmztezSwJKlQoO15dZTdsp3rHTpyIo8Sqz2eId9YGRJPl3VCs5CfIA7aLM180T+X4ZH62q5c8eo+7B6BuNXx/hho8ur3VeuszjLkh6L50+psWeJ/sNqP7f3lmARZ21bfweultQREARxFYUu9YObF1dO1bXXF1j9bU71lrX1rU7Vl1du7uxEANUpLt76r3OfwRFpsERh+d8117fJfOc+p3x9eacJ+xZBZ0bUCvHkeIZNG/B0wWv1qFCmZdVLGH/p6ujWiAWy+eXkpoOC3NJlD41zRMI5YtxMIGv0sQT7Q1Usifj74cACcnv56xopd85gYovDuBVZkKR3UWlrBLoHVUFlTXg76gshI4+q2CY/FSm+QW3rhho2Tbf54PiY7Bo73/5fp5ayRQ3essWkqxDjdDuKPWgirJLVGxnmAl43ITYnKUS8lNsX5QtjJ3Bq7wqzwqXrtuPXYfP5flZzSru2LN2usydMDE4Z8UO7vO5kwZLtbt29ylGTV2F9Ut+Q9N6kqf0B09fYc7yHUhOTYd39QpYNnMEWB1kNl7vkfMwrK8PV8aO2tclwIRknddpSk/ipM/D/QraL/zfh0QiJjYBdWpWVJqNqoYCgRACoRBGhkVHmJOQVPUUyZ4IqEmg57tzOJLwTs3eX6dbq9Ry8InwhCvL7/heTR/Br7M0tGy3H1ZpeQXKl1Mt8fof/oJrvhXYCwR4smG31JUFDrdBgFOg3FWXi28IjwctwEvnFe7u7MMkT9/67Ok7onDH1sRoNg3BKzchr5Bcuw/B4dH4fdRPuT83MtSHQwkbqSti5egWrN6N+IRk9PBpKlVIvnkbgn5jF3Il6T4Xkr8v2Iiald3xY6dmaNV7Mv6cNxrVKrrh2p0n+PPvf/DPlnnQ0SnkM9ME1+9sDk0LyeY9JyAqJp6jZGNtgVaNa2HSyF4wMTYqUuQ+r/P9tRa2dvsxXLrpi2NbZbv7fK25ZY1LQlLTxGm+YktgfsRDzAqX1HT9lq1fQjXO37FEgDWyolR7VtTUuus1uwwn0S6F0/Wsuxq3+NL/MQk6dBwGUdJvgG/O5SGFFyd3fJtMV9Ty7Q29KEOF61DLoNxTiB1ynr5VeyZUa75C6MQr/RNQqkc+IZmYnIrF04YrNUNGZhZYSbpVm4/A0FA/n5CMiUtEt59n4X9j+nC3lstmjcy9kWSCYuHUoahfqzKGT16BFo290NOnGboPm4XxP3dH0/o1lFoDGRWMwLcQkgN6tOZum4PDojDjj21o6F0Z838fWrCNFHJvTQjJ6NhEzrXDzbWQXHAKgQEJyUKASEMQAWUInEwKQqfAM8qYFqqNpcgQQ2Jqwvsb+zsquynPGi9QxWKZUublam1C5qcsP3n6PLh+A6WfSr95jG5tjUeN8qcDkjZp02e/wuSt7Bq8Si1UnpFBNlDhBsTmLOr7WYGH+5oD8NynAZZ5n46Xrt2Hc9ceol6tSrCyMEPzhjVRu7qkXKW8Nn/VLu6J7vOn7czMbAwcvxhN6lXH6EFdUKf9iDxCcuLc9dyzIROP7fr9zj1tR0bHY+v+0ziwYRaYSE1Ny4S9nZWi6enzAhD4FkJy/LAe6NS6Abdq5kqx49A5XD68Eg+fvsayDQfwPjgCLZvURp8uLVDFsyxn12fUfO6Xi4s3HuJDaBR6dfoBowd1hZGRAU5euI3rd57C0sIMJ87fgmd5Z4wZ3DX3Wfqurz9WbT7MjVvC1gpd2jbi+g+bvBwzxvVH1YrluDmYsBs7YzWWzxqJK7ef4Ortx9i2cgrYd5X9wsNu3XPai/ir1wAAIABJREFU2Ol/wadVfdT1qsi5bQQGhXEfVfJwxbSxfeHhVkbhuk9fuotHz95g5m8DwH6BkzdOAY5Ypa4kJFXCRcZEQH0CEfx0OD7bqf4AKvSskm2PHyMrS/wd/Y0gliG2VBhSI6Z2peLQtOp88DITFc732LEROpTsL9Nu7yt//HAhb/Lyz42fTbZAmHmQwnmYQZ13A2H7NP8TulKdVTGyCwdcb0Ksz/JT5q3Go8owX8uWV30roJ9XpLF/kNk/0oYG+vB79R4XbzzCyjmj0aaZt9xlfCkkWfDNpHnrwePxsGzmSO6J+kshefuBH3cbxZpHOSesnj8W3YbOxIzx/RERFY9VWw5DX0+PE7WLpv78tTAU+3G/tZBc8OduPH/1jhNvbfv8jokjeqFJvWpgbhP/nLqOS4dWcN+jys0GcTd3Iwd0homxISbP35j7i8mOg2c5ATqkdzs0rlsNpy/fw4vX73F481xkZmWjVpvhGNG/E9q3qIeg0EjcfeSP6eP6ccLN2socCz9+vzbtPskJVdbv8xtJ9svNoZNXcHbvH9xa2Ng//jIXV//5k/u7cvzsTTBfYgMDfWzdf4oTrGwM1uSt+/M52M2+vHE09UUlIakp0jQPEQBQ3m8v3mblz2VYGHBap5ZDh3BPuL4rev6Oyu6vs88S6CfnTdsjq+/fVUdjln41mUOPi47AlINnZX6e5WSEa7/EQijOVmp5lSPbw/muN6ApUV7uOcQONwDhTUD0qa64Uov9GkaGJcGl/lHQ/rdoMxKSUrFxaV5fyi+7fSkk2c3ODz3Go3uHJjA1kdRCZzdPzRrUQKfWDXOFqVAoRGxCMhzsrLlbpcMnr2LXX9PQdehM/D6qN7yqesCr9TBcOfIn3UwqOiw1P/8WQrJ2dQ9UcHOG/5sgnL1yH2sW/opXAcE4dekuJyhZy+YLuFvII1vmoqK7CyfI9q6dgRpVynOfT124GbY2Fpg8sjeYkLz14Dm2LJ/MfcYCZXz6T8XtE+ugq6uDuh1GYuzQbujfvTVMTT65z+QEgd06sRbmpsZo1uM3bjx2W/q5yMv5PufMv3jNXjC3DfZLFmvs9v2p/1u8D4nA85fvOEH44qokAE3eur98Ppc3jprHq3I3EpIqI6MOREB9Av3fX8Ke+DfqD/BFz/4f/R3tirC/o7KbbdNhO8xTPtXIVtRvZJ0/8K/AUqZZpaxMXNwsP3fnhwG28C8vPbektIGdkr1Q+WF76CTlzVupaK0F+lxPAHjegNiCPX0/KdBQBeps2xS8sr8qHOLPLUfg+/wNJ+7ktS+FZHpGJvYdu5SnC3taZP9Ad2hZH43qVM3zGZ8vgM/A/2HR1GHcUyYTj2f3/YEyjvZgvpQLfh+CBt6FGH2vcOfFx+BbCElba3OUdS6FMqXs0bJJLU4osl9abj7wg0tphzzwRw/uwj0rfynIFq7eA/aLyKwJA/MJyRzhx57LWaDY/mOXuKAw1qpXcsNvv/SEd3VPrj8L9Br6U3s4OthiysJNuH7sLy6K+kuRN27mGu72cuqYPmjS9Vf8OXcM951kT9qDf1sKCzMT1K1ZEZnZfPwrR0h+vu7P51A0jqa+kSQkNUWa5iECADbF+GNEsPJi6UtoViIjrp61d7AzjFk961TtwNqoxRmU5B9UaTN16mxEqEB+hG7I7sPQTZQP6e5sAyToRio9tynfFvWeDIFBqInSfWQZHn97HK/iX2FktZGwNJQtinP720ZKnr4NWSqh0ALPr8oAPJdfgBKt83VZufkwfFrWh2uZkngV+AE/T1yGn/t0wPB+HbmggAHjFnNpedo3r8v1Zf8Q8wVCLPqL/aMu4ny99PX1pOaT/PJp+/PJj5y6hvNXH2Lzsoncj3sOn41fh3ZHrWoe8G43AjeOr4GNVQETzKsCqBjZfgsh+bmPZA7qlZsO4e2HcKxbNF4q/YIISTZgVjYfr98GY/fh87j7+CX3LM3ynm7ddwpHz9xA6ZIlUMnDBWxtrH0pJG/ce4YRU1ZiwZShWLPtGC4cXM71Z37Fr9+FcLeh7M/sZpLdpMq6kZQlJBWNo6mvJAlJTZGmeYgAAHUq3FTNssePUVVQ6b0jRC+NNPe0qqETq1rHFxWM/lJpthBrD9QtKxEQ8trTS5dRwv+DXJuEBla421b1tEyNXo6A+au8NyGK1vP55ynZKej5X08Y6RkhU5CJQZUHoYd7D+jpKJmGqewLydO3iP2XqcrUatnyqqwGjJzy9e01Yi7nG5nTWFACE4fshiYpOQ0NOo3mfBh/6tKCMzl04grmrszrK8yib7u1b5xvbFlCkt1GNv9xAtYvGp8b9MB83JZvOAi+QMAJ2ymjP6UjUmvD1EkmgaIiJB/7BaDfmIVcxoB2P9RBUkoaLlx7CO+anijvWlrtG0mhSMzdELLgGktLMxz89zLYTfutf9dyv/TExiehabdxHJ9z+5fBqVQJqUKS/dLEnr5ZqismNtkvVKyt33EcF248wqalE5HN52PDzn/lPm3LEpKKxtHUV5iEpKZI0zxE4CMBN7+9eKfAT7JNmhs6hFWAy3fs76jMgTuWDUODsvMBgWpC6HiFPhhl+ikaUtZcx58/RZ2rvgqX8nKcNYJslYvi/nwwr+BecHjkqXB8aQYrHq3A7fDbONDhAG6F38Kfvn9CX0cfCxsuhIe1h/Jj6goBz5sQW7JbysfK91PF0tABvKrrZfZISctAQmIy7G2tuYjYb9VYsuaMrGzOd43a1yNQVIQk2+HR0zewZO1eLucoa+xmfMOS3+Bc2kGqkBSJJLfgOw8xH8kXuTfazH+xWffxuHxkFXR4PAwavwRBIZKXCnbrOGZIt9w0VOxnLP0UC5phvpo5bfeR87jyMWo752dMJLLcj2xc5tfLGss0wCK9/d9IfsllwT7s9lLejWTOuj+fQ9E4X+8bkHdkEpKaIk3zEIGPBH75cA2bY/3z8RgQXw3NQt3A+TtGF838joV5iHoGAnRsuQC6qcpFTn8+98xac7BVXErhcmaFh2DEPxcV2gnN9HB9Sjoyxar7CrjH/oDy95oAysXscGsJSg7CsAvD0L5se4z3Gg8eeOCL+Djw+gDaurZFCWPJDYfKzSYaKHsDYkPmTxmscneZHUq0As9lROGNRyN91wQ0LSQVwWKVjeISkmGgr1eopTOZawZLUWVtmddFgv28ns8o/L1iMueLqW4Lj4qDtaUZjI0Klqu2sMZRdx8kJNUlR/2IgJoEjia+Q/e352AjMsLg6JqorWX+jspiae+zESbJd5U1z2PXvu5aPOHrK+zbKD0Vh7YeVmjHDMJ62OJZNeUDbz4f1D69Amo86g7dWMVrYv1S+ak49f4U9r7cC2dzZyxqtAgWBhZKrVNpI1d/iEveBMQs8jtd6W7SDHlukwHregUagzprD4HiXmubZRPYe+wizuz5gyopASAhqT1/t2kn3wmBtCwhzq1Lh8i/aJX30iS+Zm2Owy7juFpTZuqbolzVlUr3Ddu6D7x05dLnPJpugmhD9YJY9MQGaPxkFIyClAia+bh65ic56vIoTkyyJ+2v0nhioOJNiK3Y0/cj1afg6YBXcy+g8+2erFVfNPUgAl+PAHuGtrQw5cpzUiMhSd8BIvBNCNxeJ0T4Y9E3mftbT+rV8A7K6W5Sexm3XNqgp203pfu/PHMeloGSChKKWkpVc9zsKT84R9EY9QKGwNpPUqHiy8Z8IdP4aWjt8in6mUVub3m+Bae6nJI59KOoRzgaeBQNHBuglXMrGOiqKeqsYyVP30ZMVCq5T6s64JWfomjb9DkRIALFlADdSBbTg6dtf1sCQbdEeLhd+G0X8Q1md/V8h9r281GQ0PO/qk/EEl3lg1HO+T5C1VvKlx4MGGGDQEfppRWVRVY1vDOc7uWv+3zwzUFs99uOGXVnoFHpRhCKhRh1aRQnDNf8sEbm8Cwo53H0Y1wOuczZrGq2irvFLFBzfgWx4w1AfBMQyvYN5bmOAex+KNBU1JkIEAHtJUBCUnvPlnZWhAnwM4B/x/KL8AoLf2lmlqlo3WAhdNIiCjT4wLorcYFvqvQYy4Lfo++/V5W2Z4Y35gGpiFepz5fGron14PmgFXipeQOnjgQcwaZnm+Bo5ojU7FTuhnJDiw0oaympDyyvCUQCjL86HlnCLGxptUWRufKfV2JP3yxA50G+PryaewBdioJWHiZZEoHiRYCEZPE6b9ptESJwd4MQoY+Kz/N2R5/VMEwueHqaKt6bEK/CZW7HlERs2nFMpZOPam8D33oFu5VkE1pml4a3bz/oR+T1h03KSsLV0KtgwrClc0vlkpF/3MG+V/uwy38XznaTXf5Rpc1+bmwZB7jd/Pj0/R6wrg+e2yS1h6OORIAIaD8BEpLaf8a0wyJKgIlIJiaLQ2vZ7gCs0goufF7b18QPTqqnoQlfvxMQqiban04xR7ipkn6ECg6xid9omAbYybUKTwvHzhc7MbL6SFgZWkm1fZf0DmOvjEWNEjW+XnBOzsxmb4A6CYCHpCINNSJABIiANAIkJOl7QQS+IYGTE/hQkJv8G66ucKau2/Qqyoh3FMpg+yoNxSSjOiqPFfjvKZgER6vUL8PVGNeHRkIkLhyxXzuoH0o8lh3lufTBUlwMvog97fbAwURSMUcMMYKTg/Ek5gmuh13Hs5hnKG9VHksaLeFuMVnU94ZnG/Ag8gHnZ8luNzu7dYaNkY1Ke5VqzCpADij4MDSCFhKISwHu5M+FK3enPvQLiRZ+E7gtkZDU1pOlfX0XBJ4dEuLNedVuyr6LjX1cpEd1f1Sz/KPQljzReyH2C+Xf7Emb7Pq9uyh//6XK63g/yBavyqmXW1LaZJ7RrVH2bn1AijZlCclfxr1EtRLVuDyTk69PxvskSelB5j/JbiEbl26MSraVuJ+Fp4Zj2MVhXDWcCbUmIJ2fjhPvTiAxMxH72u9Tea/5OtQEQP/2F5yjNo7AhOQ0FX45tDUHFg0qMAmRSIzo2AQu9c6XSbwfPn3NJQ53c3WUOk9GZhaXsFxXV7fA66AB8hIgIUnfCCLwDQkkhYpxYY5A6RWwG6pUQRSMdC2hzyt4AESGMBHGutKfUZVelAxDW4d4NKs+H7zMhIIOldu/Wd0NeMNXverPxrcB6HT6plrruDNHH4k6USr3jXybgpJueStisEEcU6ui6sNO0EmQXVPbN9oX025O424WlzReki9Cm4nOIeeHIDItEpNqTUIL5xZcjW72/QhICFCtxKKsnfUG8HW+GiqzpA5FjICGhSSrrb5pz0muJnVOq17JDfN+H8LV1GZt1NRV8KrmgZ/7dMgHKzMzG7XaDsfahePwQ0P2GxK1wiRAQrIwadJYREANAjf/FCDST6yw5/v0W7gUuwxCsaQWn5tJY7QoMZUrryevMfvDEaMhEGWhn9MuzjRVEINT0TOQIoiCia4N2tnPhbW+JPfhtbjVEIiz0MLud4VrkmfQ2Wcp9JNVvwWUNWacaSlUrTBHrTX1T4jF0j0n1eob18QK91u+U76vGLi86y2eXIhAyyHlUa15yXx9jQQWaPB0GAyDzWSOG58Zj/VP1+Na6DX4lPPBsCrDYKLP3psBlnty49ON6OHeg6vTHZcZh0UNF6GKXZXc8Z7HPsfyR8u5ijm/ef2GcpbllN+DK4C2ypuTZTEjoGEhuXLzYRw4fgkrZo9CnZoVkZCYgj/W78fN+89x4cAK7oZSnpBkN5kvAz/A2dEe5maSv0PUCo8ACcnCY0kjEQG1CIT5inBnvXw/vDRhLPaEDkBFs3aoZz0USYIwHI0YhwbWw1HVooucecU4HT0bIRkPYaprlysknyQfQXD6fXQq+QdOR8+CnUE51LEaxAnM/WFD0Lv03zDXk/jpqdPadNgJ85Qr6nSV2ee8W1cMslRP3dgIBfBbv1vt9bz4zQrB1orFpFAgwr8rXyL0ZRIa9HDBzUNB6DKxElyrWUudu+Hr4bDwl18z/E3CGyx7uAwsGGdvu71cIM7AcwPhZe+FcTXHceNufLYRJ9+dxMnOJ6HD0wEToX1O90E3926oZlcNKx6twM62O2Gip+Q/ou0BFDBNpdqwqWPRJ6BBIRmfmILGXcZi8bTh6NS6QS6bzKxstOo9CX26tMDIgZ05IWlhborklDQ8fPYazRrUwK9DusPJUVK3vt+YhZg+rh8qurtwNkvX7ceF6w9hZmqCnj5NMbyfDz17q/nNIyGpJjjqRgQKk8D52QIkh8m+lQxIu4zLscsx0Gk/96zN2uXYZUjkh6FbqT9lLuVOwt8ITLsKD9PmCEi7miskz0bPgZmePRrZjMK9hG2Iyn6NTg5LuTF5PF38YDtB7e01bHEWpfgH1O4vq+Nir2lYAxe1xw06/C8MItXLDcm30cf131KQLZZfs/rUutd4fScGg/7wgo2jCV7eisa5zQHoO78GSjhLz31ZM7QHSj6orHBfT2OeonqJ6pxdh+MdMKf+HHg7eHN/DkoOwrALw7C9zXY4mTmBJT4/F3QO21pvA0s11OO/HjjR+QSM9ZRwh7AHoHzhIIXrJgMtJKBBIen7/A36j12EOyfXcULx8zZv5U7EJSRj9fyxnJBkAnL8sB5wL+uE5RsPoq5XJUwY3pPrUrnZIOz6axpqVfPA5Hkb8PpdCCb+8iPiElKwZO1ejPu5B/p2a6mFh/X1t0RC8uszphmIgEIC766K4LtH9q3ku/SbuBCzCIPKHIShjsTvzjdpP/xSTmKAk/TAilep53Ezfj16OW7E27Tr8Ev5L1dIPk46hJDMR5x4ZKLSxsAVnmZtcDBsOPo47eD8JpP4obDWV024Van9BJ4msoWtQhByDHrUXY3bfPXrk9+7eRNlHqsfOBPSyxZ+leX3z84QYu/MJyjlbo62v0iq79w9Fgz/m9EYsqK2zN25xTeB+/1m4GXId1PIGaD/2f5oUaYFBlWWBDCwG0uWl5KJRV2eLhbcWwA7YzuMqDYCa56s4ariMFHJWkBiAFddZ0zNMXA0lRKY0ByA8oWDCnKk1Pd7JaBBIXnu6gNMmLMOL67mD+5Zu/0Yrt15gsOb5+Z72j56+gZ2/3Mex7aySlqfhGRFd2d4txuBZbNGon1zSTQZu5286+ufa/u9Hsu3WjcJyW9FnuYlAl8QOP27AOnx0m8lM0XJ3NM2e26uZtEVWcJkPE85ATFEUoVkROZz/Bc1DT4lF6OUYRU8STqUR0gmCyJwInIK+OIM6PL00dFhMR4k7uYEZHmTZjgTPZv7uS7PAN1L/aVUQE4p1wg0dJsP8OXf2ql78GVrbUKWYldSmcPvfv0SLc7fVXd6rt+DGcaINfhUt1ssBo7+4YfWP7vD3NaQs0lNyMbf4x/gx+lV4ehhwf0sI4UPY3N9uXPbZpSDl28v6EUrrqPNbien3JjCRXizpObMH3K813h0KCsJNGA+k8MvDIe7tTtYne6VTVdyATibn2/G2aCzGFN9DNqVbZd/PewFvleBEFHn4kBAg0LysV8A9yx968RaWFnk9Smes2IH5y+ZcyP5ebANE6ArNx/CuX3L8ghJG2sL+PSfitN7lsLFSeK+89+FO5i3aifun95YHE6v0PdIQrLQkdKAREA9AgEXRHh6UPatZDz/A+4nbEeSIIITlLHZgTDTtZf6tM1uL8Mzn6GMcS1uMTHZgUjmh8PNtAka2ozIvdVM4ofBUr80EvjBOBI+Gv2cduNuwlbo6xhzz94Hw39BdYtu3G2lvKarJ0SnNguhm6LYj1AdOo8dG6NDyX7qdM3tMzYmEv87cKZAYyR7WeBWl6A8Y2yf9AjlvW3RuBeLUJG03dMew62WLRp0V9XRUAfNno2B8VvpPpWfTxybEYub4TcRkRqBNq5t8gXTsCdtFv1dwaYCQlNCwfJUVratjIm1JsqupNMUQMUCIaLOxYGABoVkQlIKGnUeiwVThqJru8a5dFkkdqufJqFft1b4pX/HfDeSsoQki/Ju0Gk01i8ej6b1a3Djrdl2FGev3Mep3UuKw+kV+h5JSBY6UhqQCKhPQN6t5OejZovSsT2kB2pb9UUty775JmRP4dFZr3N/Hp75HPH8IFQx7wgvy59goJM36OJ09ExY6zujvvUwHAgfxtlVMe+EczHzYaxjhSa2Y+Vuqp3PJpgm35Frc/xVBrp4fvLRu/4hC6vvpcDeVAftyhujUwXZ/nt/Vx2NWfrV1AfLXmuzs3B1U8HzK74ZbY23Dm8/sX2TjEMLn+cG1bzzjcfxlf7oMqESynmplxi87ttBsHmmmluBNDhMTK7yXcXdWE7xnsL5WBroGIDHk/KEzpb6Y4EQU+fiQkCDQpIhzYnaXjr9F9SvVRlxiclYsmYf7j32x8WDKzjfyS+jtmUJSeYjyW44TYyNMHviQCQmpWDC3PVo06xOrj9lcTnGwtonCcnCIknjEIFCIPD2igiP90q/lWSR2wY6pgjJeITHSQeRwA/hgm/Y7SF7+j4cPooTliyy+8v25dP255/HZb/jIsAHlNkPQx0zXIuT+Dg2tR2HA2HDUMuqD9xNmeOc9Na09b8okSm/ljV7ke77Tyx+rGzKiUn2Z599MZjcwBxhKULsfpqGzp4mGFlbejqckXX+wL8CSZBRQVrI3iPQjU8pyBCADnBtjgjpSMwd59WdGJxe9xo6ujyIhGLUalcaTfuWLdA8VSJ9UOaO5EZZnXYm6AzWPlmLtq5tudRB5z+c59IJGekZcbknG5VulHdY8o1UB3Px7KNhISkQCLk8kut3HM/lzfJIslvKci4SP18mJJlIHPoxj+T5aw+wYlPep+3da6bBq6oHPoRGYeyM1XgbFM71bd7QC4umDYO5qRLBaMXzxOXumoQkfSmIQBEjcGG2AElSIrivx63By1TJ06ydgRtal5gJcz0WYguwxOK7QvvA22oAvCxZJum8TZ6QZL6U9oYVUMdqINcpKusVzscsQJYoFVb6Tpz/ZE6Az5fj1mxwF256yvkVfUgSYNSpBKxpZ40SJjroezQOB3rYwUSfh8hUIUb8F4/jvSWpOr5sdepsRKhAuUAUecf55PIV2L/I+zQtzz4oOwXGOnpw+CLaObKjDR57B+bpmp0pRERACqxLGcPCTuIvKatFB6XC1NoAppby/SGdk2qh0sP24CWrloSdpQNi+SVn1p3J+UaGpoZi8LnBmF53Ove8PejcIOxss5MLyOEay0DUuYj9RaDlFF0CGhaSOSBYPsjImHhYmpvC1ET9wLuc8aJjE2FkqJ8vGrzogi+aKyMhWTTPhVZVjAmEPhDh7qb8t5J8UQbYraSFXino8GRXRSksdOnCBJjoyvbVc63wHrVLzgfEypd4/O9NBnY/S8PWTraYfTURQYlCDKhuCr5QjHNvM7GlY/6n4BBrD9QtO7FQtnXU7xnqXXkkd6wMkQAXUkNxLOkdQvmpaGPujEklJL5Un7cnU80QYRKs8rrYjeXhRc8REZiCzr9VQtka8v0hzfklUOfxIBiEKZkD8mONbnbtm/OEfSTgCO5E3MGKJiu4ajgs6vuIz5FPvpI+AJxU3gp1KK4EqNZ2cT15qfsmIUlfByJQBAncXC1A5PMChCh/5T2ZmKejbaMF0EmTPA3Ja69i+QiMF8CrlAEczXUx80oSDHWB/zW2xK6nabj+IRMiMTCjiSXcbfIL5OMV+mKUaRNF0yj1+fSIUIw+ciGfbbpIABMdPQjFYnT/cBaZYgGamDqijL4Z9ia+wQnXDjDg5b0VTC9vgusDwriyhF+2R2fC8NY3Hj3/VwU8Hek3qTnP4f0X1ZSZY/LzcRv7j4LZa+k3too2v+nZJiRlJ2FyrcmYdGMSsoXZWPPDGkk3lupHtueCoqHpcyJABIo5ARKSxfwLQNsvmgQSPohxab7yNbg1vQsfn79glOyrcNr7YdmYdSURZSz1EJQo4AJqhtY0Q/9jcfillhlauyl+nppZew62iuRXf2ELMYgJh9WDKzB9648Mp7KIb+yDbLu85QnrZaTh6N+H8qx7ZNg1tDRzQndLN+7n+xMDcDr5A3Y7t4QIYnR8fwrj7KqjtbmkhOTn7d1QW7x2+SK3pBg4MP8ZDIx00XlCRejqyX6WPr7Cn/Or7DReuVDpWh96w963gkLuXxow4TjmyhhEp0dzeSbXNV+HkqYlOX9P/AQgf0lwleegDkSACBRPAiQki+e5066/AwLPjwjx+qzyz8aa2lKLtodgnX5aqenWP0hBWWs9Lir7XYIAUy4mYngtM7hY6uG3cwnY5GMDJwtduWO1r7sWT/jyczCyAdwXjUa2jT2ySrnAKCQQ+knxCJi+Pt/YYdv2g5eWmfvzISGX0cq8DH6ycud+lijMQs8P57DHuSUc9EywPs4PzzPjsKE0y42Tv92eo4sknZg8Hwj4IugxAanArXPfrCdcfsmukxVXtsmZoEJsC5S72wjgK3UEeYxiMmJgbWgNPZ2PN7/1AOR/tVd9YOpBBIhAsSVAQrLYHj1tvKgTYMmuz88QICWq6Dxx12l6Dc7i7Uqj2/QoFbdDsrC4hRX3rL3iTjJqlDRAi7JGOOyfjhOvM7C9sw30ZDz/ZhiYwa3KCoXz6aYlo8Kcn+G/7NNtY6XJP+LNrM0QmFvl6e9/9gKsAkJzf7Ym9jkCsxOx2lGSoy5TLORuIVc6NkRVI1vOT/K38FucsDTk5Re9sc2t8aDZp3RAn08W7J+IM+vfwMLWEFYljWBhawQDE12IBGL4XYtCUkwmBi71gm1p5f0f2fgOaZ6o/qgbdOMUC2yZ8Nhlrbwy7QqpkwERIAJEACAhSd8CIlCECYQ/EeH2WtlJyjW5dPdqr1DdSrWEvUIxMP96Em4FZ8HeVBeJmSLs6GLLRW2zNvF8AvfUXamEdEF006UtfrTtKnWbbn+MR1zzrkis1YRFlXA3knwLa2SWKQ/DqBAYxERIvZE8+9gX1W4+zR0zSpCOfsEX0cmiLKob2+KfpLd4nZWIwy5tYK6juMoMG8hvoiVCLN/nW2duQ9RQAAAgAElEQVT4m2QcmPcMVZo6wNLBCEnRmUhLyIZQIIalvRFqti4FuzKS+sGJUZkwszaAnoFyEdoGImM0fDoCRkGS6jkqNyYi8778qzwEdSACRIAIkJCk7wARKOIEWF5Jll/yWzZr+wQ0r7kAvIw4tZYRlSaEXzSfC7ixNvoklDIFYhjpyX7/XV19IpbqSi/8bP78HhyPbILIwAjhP47k/CGtHl6DaeBzpDt7IMm7GbLsS+db75KQ9xhw/Gqen99Pj8LSmMdIFmbDXs8YE0rUQC1j5QNbsu0NcX1sAvjiT0/mORO8vhuLMxteo+/8GlKDat4/TcDV3e+QEJnBdWn4owvqdsrvjykLfP03P8PqRf59yj0oVvZbdulvtc6YOhEBIlA8CZCQLJ7nTrv+jgiIhMCFOQKkRHy7J+5OPstgkPxCaWovY/nY+TQN0WlC1C5lgDZuxnCTEpGtaMABdVfiIl9yYyet8UQiWN86i5IndiDD2R0RPYYjs5T8ijDtUpOwdftRqeOx4BodRY6NMtYS3NcWLyp8EXjz0fb+iVA8+C+Ue8Zmt445LTkmE9smPUKlxvZcicX48AywAJx2IzxUqopTLawrSt9XsvIP5YxU9LWjzxUQyBAmISzjsUqcyps1U8mejL8fAiQkv5+zopUWYwLRL8W4vuLbRHG37rALFimXlabPgmp++S8ezcsawdZYB1eDMhGTLuL8In+ta84lIFe2VfbehAQlXvZ1sjNR4sIR2F4+juRq9RDVZTD4lrYypwnfuAvgKzGwsgvNEYyzjBCnJz0l0vktAQh7nYzByz9Vq/G/GY2re95h1EYW9SJpd48FI/pDmtKR3Dn9yibUR4UHrcBLk8OXfdQDgGw0Ku6YzIsjASYkr8ZKKmAp04x1LdHMbrwypgptWI3t5NR02FqbQ1dXfqCewsHUNMjMyoaujg709b9+Pl81l6jRbiQkNYqbJiMC6hN4dUoEv2OFL37krahh83MoJdiv0qL/uJXM2f/e8JPv3rCT8QhPEcLBTAebfWwhJyNO7lyv7GuiudMImXOb+z+C7eVjMA59i/RylRDbrBMXse1wchcsH11HXPMuiOrQT2r/gBOnYfohKs9nLB/kvfQoLqdlA5YaR42WWMcSd3zy+0qyoVjwVMyHVNi7fioDySrhHFzwjBOSBsaSfxSPLXsBMxtDtBpaXuUVWGeVQW3fPtCLlJFWiaXjrKTysNSBCOQh8C2EZE7t7NDwTxkSGtethlGDOqNaRUnqLk01Vqu7WiU3/D4qfxUxTa2hKM1DQrIonQathQgoIHBnvRBhvprxl6xc+ykqmqxS+UxGnopHwzKG6FdN8iTNAm467I3GRh8bTDyfiK6exrmfyRt8b6WfMdnIW6qJTnYWPKf3R0yrHsgq6QyjkLewuXMOr+bv5AJvDKPDOJEZ3nuM1P5X79+Dxz3/PJ+F89MwMOQSl4R8WxnpGbr9MuPxOishN+ektMFfjbXG+xLSo7g5QSkSg/lNejaQ+GD+t+YVEiIy0H1KFby5H4vLO9+i34IaeQSnqofQ5PlYmAZ+USWICcjCyeuu6nLIXssIaFpI7j92CQtW78bcSYPRqkltmBgbIjAoDPuPX4JTqRIY3q+jRgm/D4mEsaEBStrnr8Sl0YUUkclISBaRg6BlEAFlCGSnA5cXCpD6lVMClXSORCOP+UB2mjLLymOz8WEqjr9Kx4rW1qhkr4+/fVNx5X0m9nW349L9XHqfidVt5ZcFZANO8F6IA8KPtaC/WIVeSiI85g3Hy6X7IdbRBU8kRMUpP+HN7L8hMFMcxbzuXQC6nrqZb2+30yJR09iOq68trd1Nj8ScqAc47toeRlJSAbE+IkNdXJ+RhQyx5Gb2y8ZS/myf9AjtR1WAR107sMI4d44F496/IWDlE9uO8EClRvZcFPfD06Eo5WaOSo0dmD5WqXm/7w+7J+UkfRwASA9+V2lMMiYCjIAmhWRKajrq+YzC1DF90L9H63wHwJ66jYwMwP7/6r+P4L9Ld2FhZoI+XVuie/sm3GfJKWlYum4/Llx/CDNTE/T0aYrh/Xy4p/GTF27j6Yu33A3jfxfuwL1caUwe2Rs37j3Dsg0H8DYoHLWqeSArm48l039B2TIl8cf6AyjvWhrd2jfGw6evMW/VTkRGx3Nra9agBmaM61+s6neTkKT/XSAC3xmBuLdiXFn89fwldXRF6NR2IfRSZN+qyUOWzhdzycaZr6TuR/GztJUVqjsY4FRABvff+vaKf5NvWncDAviyU+GU/et/MAoP4m4k9eOikG1fGu/HLlTqNPskxmH57hNK2X5uxJ6/OwedwUjbymhnLjuoJ7yrDZ7WDJQ5fujLJBxb4Q+HsmYwNNblyikamuih46+ecK5ihZCXSfhniR/K1bSBqZUBF9HdY2oVlddbMaotXB/VlYjIvOk0VR6LOhCBHAKaFJJP/ALRd8wC3Dj2F2ysZf+SOGfFDrx5G4Lxw5gTMDB35U6MGNAJHVs1wOR5G/D6XQgm/vIj4hJSsGTtXoz7uQf6dmuJHQfPcoKxZhV3NG/kxd0yVizvDJ8B/8NPXVqgc5uGCImI4cY4smUuKrq7YPS0P7nn9F/6d8SLN0EIfB8Gz/LOyMjIwqzl29CsQU1MGN6z2HxhSEgWm6OmjWoTgQ93RHiw9ev4S7bz2QLT5FsFwsX8AV/E8BGaLERtRwPYmehwFalHnYpHPSdDDKwuOxKbTRxn5oiqHrPlroEnFIKlAMrxkUwrXwUiA0Ol1m0hFOLV+l1K2X5ptCnuBR5lxGCzk/woVN9ppogyCpE5R3oyH4EP4jiRWNrTAi5VrKBvqMv5Uq4ddgf1upSBt48TstIFWDf8Ln7b3UjlW0k2eR3eQNjau6q1V+pEBKQR0KSQZL6RE+asw/PL26Gjw0NqWgZW//1P7rKa1KsG7+qeqNV2OKaP68cJQtaOnr6B6NgELJ42DN7tRmDZrJFo37wu9xm7nbzr649jW+dzQvL8tQfYs3YGNz5rG3b+i8P/XcPlwyu5P/P5AtRo9bNUIck+j45NxGO/AETFJuDi9YcwNzPBukWFE1z0PXwDSUh+D6dEayQCUgh8jeCbJq1PwD5TemoceYfA8kFu8U3lckV6OxqgfzVTGH6RHzIkWYh515K4KjdMWMpr5926YpBlW9XOXSyGQXw0BGaWEBkqruH9/sgJGEbkz4vJROLuhNecr6SjvilKf/yvlJ4pTHT0kONLyfwomY2sllrRFDd+ki0kZfVjz9t/DryFX7c14ExYOiAmJlkeSlVbJfP2cDGR7meq6lhkTwRyCGhSSD71f4s+o+bjypE/YW9nhbT0TGzac5JbyrEzN9CvWyu0buYNn/5TUcWzLPT1PrmlOJSwxpgh3bjPTu9ZChcn5uMB7gmbPUffP72RE5K3HjzHluWTcw941rJtyM4WYMn04QqF5OnL97jbSu8antxN5svAYBgZGmDj0gnF5gtDQrLYHDVtVBsJPNknRODlwgm+qVH/Psrr569NrQy36ZcT8SSSj8bOhpwPZAVbfaxtr9gPUtbYi72mYQ1kPx3rJ8bC4ukdxDXx4YJrjD+8geuG2dDJkiQET67eAKH9f4NYV3Z6jrs3b8H58Zt8S8gQCbA1/iUiBGkI56cjTpgJ9jPWDHg6sNMz5sRkV8tyGGUr/7k5cLgNApxkP3HL2v+94yEIfBTH+Ukam+uh96zqMLFUrRyim2ljeJhJDxpS5kzJhgjIIqBJIZnjI/nr0O7cU/LnbciEpahbsxJ+6tIc9TuOxqHNc1DZI+/te1JyGhp0Go31i8ejaX3JL2Nrth3F2Sv3cWr3EqlC8vDJq9h3/BJ3Y8mavBvJToOmod0PdTFyYGfOdtuBM7j/+CUJSfrrQwSIwPdD4P4WIYLvFUxMurh/gHfp+cBHwaTK7oOTBBh6Ih5bOtrA1UqPe9IefzYBc5tZokEZyVPz8yg+yljqwuqzqjby5uhR9y/c5st+prZ6cAUl/92OVwskz9MVZg9Bto09onz6wzjkLezP7kdcs06IbvuTzGl2vnmJVufuKrVVgViEaEEGIgTpiOSnI1MswA9mpWGjq/jm8+ZcHaTwYpWa53Mjlqw8LiwDrtWsIMgWIfRVMoJfJIKVXWw3qgKsHGTPXca4FqpY+Kg8J3UgAsoQ0KSQZOvZeegsF+AyaWQvdGhRHzZW5pzf4riZf3F/ZgJz2KRlXEDM4mnDYW9rhZeBH+D7LACDerUFS9djYmyE2RMHIjEpBRPmrkebZnU4P0ZpN5Ih4dFo2+d3LmCndvUKOHf1PtgTuzQfSTZ2+bKlubFYv3mrdsHa0pyEpDJfJLIhAkSg6BBg9bhZXW51mrFZBto1XgidtFB1uuOAXzouv8/E5o6fAmiW3U5GXIYIS1pYgS8Uo/uhWIypY47WboqFF1tE2VqbkCWnkI9poB9c183Eq0V7INbVlURsz9oMvrUkpU6Jcwe5G8u3v8tOmjwqNgoz9p9Wa8+qdIppbY2HjVQLXGL+kywghwlH9l9aEh+O7uZwrmzF/cdyUcqK4i5lVAU1LLurskSyJQIqEdC0kBSJxDhx/hb+2noUUTGS6GjWWIT0yAGduSdt5p84d/kOXLv7NPfzEf07YezQbvgQGoWxM1ZzEdisNW/ohUXThsHc1JgTqbcevMDmZRPzMDjy3zUcPHEZOjo6+KFhTazZehT/7VqMss6lMHb6X6hasSyXduj2Az9MWbQZ8QnJMDUxgke5MlzU+Polv6nE9Hs2pqft7/n0aO1EIIeAGLjxpwBRL1Qvo+jjswZGyY/UZsmisO+GZmP+D5a5Y7yKldxKnvypBE6+ycDe5+k43NMOH33Z5c7lW7oxfBykJxLP6aibkQbPaf0Q2Xkw4pp2ROUJ3fB63nYIzCWhyXaXjsLi6W28m7Bc5lzlsrNwc9M+pffNF4vwIjMejzNiwaK3KxvZoK6JxOdKUXs+2QKh5kGKzLgyio9Oh4H9w+nkackF4JSpZAUbR2OFfZmBg2EFeFlRkmSlYJGR2gQ0LSQ/X2hKWgZSU9M5f0lplW1Y1ZmklDTYWVvk+5wFxRgZ6iuVmkcoFOb2Z4E07Obx0dnNXDqhLxuzjYiK5yK+9fS+TbUdtQ+zEDqSkCwEiDQEESgKBFhN7lt/qSYmm7c9DJv0UwVePks6npPqJ2ewTvtjMK2xBZbcTMbPXmbw8VBODG2pOgaz9asqXJPttZMoeXwbMsq4cQnIY3/oivRyFWH61g92F/5BZJfBiG/cQe44wfv+gV6c9HyPOR2FYjGOJ7/DtviXyBaLYKFrAAc9E7zLToK7gRVWODbkfCfltazSRrg2IhZCcbZcO3YTyYJtcupxZ6QKcGl7IFdasXaH0vBq4wieDDVub+iBWlayn/IVAiUDIqAkgeJQa7tO+xGoUdkdhgb6uHzLl7vZZDec1PITICFJ3woioEUExCLg9loBIp4pvpn0bnwdLrxtX233i28m42F4NoQiMf7pVSKf0JQ18Yg6f+CE4NPtprwFmvvd50oiMiGZ01jEdmzzrohp1ZMLxJHXHl+5Cgc/6SUNc/oti3mM8ykh6GHpBktdAxxOeovdZVoiRpCBX8KuorNFWYxUEHTDxvrQ3xb+7gFK8+ZnCrFjii/MrAzQcmh53DgQBNfq1pyY/LLZG1ZALbqJVJotGRIBRQTYkzXzw9TT1YWnu3O+IB5F/YvT5yQki9Np016LDYG7G4UIfSjbZ9K96mtUt178VXlcDcrEwhvJGOVthq6eJkrP5V1nI8IEKpZxEYuhnxQPobEJRIbK3XyyBR158RwNLj+UubacVD+rHBuhipHEB3RM2HXUNrHHIGtP+GbEYErEHRxzbQczHcVR1fdmGyBeN1IpFk8uRODJhXAMWOwFHV0eLm4L5G4rWw+T5MnLaaWMKqOGpSQJMzUiQASIgKYJkJDUNHGajwhoiMCjnUK8v5FfTFqXSEJzr/ngZageSazq0l9E81HBTg96yjhHAgi29kC9snmd3qXNydL8sJQ/aR7Vcj9mZRINo0IhMLWAwEK51ENTI8Pw6+HzMrf1NCMWM6Pu44Rr+1ybPQlvcC89CmtKN+Z8JVfFPMVw28pKCcmEBla42/adUhhf3oqB37VIrgb3g5OhuHXkQ74a3GWMvVDFQrN1hpVaPBkRASJQbAiQkCw2R00bLY4E/I4K8ep0XjHZyWc5DJL9CoRDIBLLFYfPovhwt9WD8RdJyRVNeqxCX4w2baLIDEah7+C2YiJerDrG2RpGBqPcn1Ny80imuVVG8PCZCivdeGek4d+/D8mcL10kQM8PZzHKtio6WLggVpCJX8NvcLeT0+xrKVynNIOX46wRZKs4iptVuLm+7z2eXoyAnqEOOo2rCKeKn578y5k2QgWzFmqtgToRASJABAqLAAnJwiJJ4xCBIkrg7WURHu+TlFNs3X4PLFIvFmil2UIxfjwcix/KGmFcXfN8Y2UIxOh6IAZGejwc7VVCqUjtnEFm1J6DbaJSCtdnHByAcqt+zxWSrutmgSUpDx0wAXpJ8SizczkXzc3ySipqodsPQCc1Q6bZm6xETjxa6hgiXpjJBduscWzMVb1RpwlN9XB9KstFmapUdwFfBD39vME8lczbwcWkjlL9yYgIEAEi8DUJkJD8mnRpbCJQRAhEPBVB/OIsHAV7C7yiw/7p2PssDaws4ihvc3SqkN8n0TciG+EpQqUjtXMW1a7uWjzlK/Y1NHn3kssj6b/iCNfV8399Ed5rNJJrSMoKlrhwRJJHctIKhft9ce4irN/IL2UYwk/Fg/RoWOsaooFpSRjydLlqN/sTA3ApNRR6PB0sLVUfJfWU8wUN62GDZ9VUr3ijxzNCdcsuYME11IgAESACRYEACcmicAq0BiKgCQJJ4cDtzUCM8pHDXy6LPWl3OxjLpfMx1edhya3k3Io2Bd1ChoE53KrIzvv4+fgsIbnLhjkImLEBYh1deMwbjve/LkKGiwdnZnflOKzuXkTg/9YqXNbpJ76oceNTEmOFHT4a9Am+gCyxED9ZuUMXPBxIDMRBl9bKdsej6SaINlQ+CbyVvhOqWnSGmZ6d0nOQIRH4KgRSALxWceTaKtqT+XdDgITkd3NUtFAiUEgE7m4F3lxWa7DjrzKw40kqjvxYAno6wJxrSXgTy8fOLrbQ/zKRpIoz3HRtix9tuirVy+z1E7hsnJvHNvjn6UipLPnXynXtDAjNLBAy6HeF4y0KDcKgY1cU2n1uwHJLdgo6hWOu7bkckqkiPnp9OIdTZZUvS5hS1Qw3ewYrNS8F1SiFiYw0RYAJSVUeN5gHTF9NLY7m0TQBEpKaJk7zEYGiQIAJyXvbABbRoWRjSce7H4xB/+qm6F5R8oSbzhej/7E41HcywKQGFkqOJN1sdfWJWKoruVFU1HgCPucTyRMIwKK1eUIBsm1LQmhiBp3sTJTesxrxTTogrXwVRUOhdWoydmz/R6Hdl0Lyx+Bz6GflwYnIA4kBcDYwx4bSTVUaJ2CEDQIdZT9x88BDZYsOYLWzqRGBIkNAw0Kyec8JXGnEv1dMRv1alTkMrBTi3BU7cfnwyq+GZcKcdVyNbdbmTByEnh2bfbW5vueBSUh+z6dHaycCBSGQEAzc2wFEK/dGFZ8hwvLbyZjbzDLP7aNfNB+/nUvA7KaWaORsqPaKBtRdiYt89QJY1J70Y8fwTbuBbIFKwzC/yVmR96HH46GlWRl0tyzH+Uqq2m7MA1LxqX5wTn8bAxewoBpzPeXKMKo6L9kTAbUJfAMhyRcI4OhgiwMbZoHH42lESGZmZkMgFKL7sFkY2rs9fuz0g9rItLkjCUltPl3aGxFQhsCTI8AzSRodddvfvqk44p+O3d3sUMJEdTHF5q3svQkJkuDygjWxGDr8LIj19Dn/SWXam5NnYBYkP1F4ojAL6+L84KBnzAXVsDKJDvrGKKFrDGMdPWWmkWoT1d4GvvXy3kq6mzVDeVPVbjfVXgB1JAKqEvgGQnLUoM6YvWw71iz8Fc0beuUTkg+fvsayDQfwPjgCLZvURp8uLVDFsyxOXrgNVqVm8bTh3C5XbDwIG2sLDO7VjvvzoPFLMP7nHqhRpbxMCh36T8XAnm04ISkWi3Ho5FXsOnwOyanp6NauMfp0bQGHEjYIDArD9CV/439j+mLXkXNgtb3ZLeqKjYdw9up9ZGVlo3olN0wb1x9ly5REeFQcFv+1F/ce+3M/ZzeerZt648GTV1j99z/YsnwSjI0kv5yzG9g9R85j0x+ToKNkXl5Vj1VdexKS6pKjfkRAmwiwW8lH+4AY1SOJGQaRGPj5ZByauxqhXzXVbxVf2ddCcyfJ/9AXtBmHBKLcyslIqtEQoQMnKTXclQf3UeHuC4W2Z1I+IJSfhih+OiIF6YgSZCBFJKmfbatrxInL6sa2GGjtqXCszw2eTrFAuGkQrPWd4WneCiywhhoRKLIEvoGQnD1xIPxevce5q/dxbNsC3Lz/PPdpOyQ8Gm37/I6JI3qhSb1q3HP0P6eu49KhFXjsF4D+Yxfh0dnNXJ16r9bDONHHPguLiEWbPpNx68RaWFmYKSUkT1+6izkrdmDOpMGcGNy46wQsLUwxb/IQPH/5Dr1HzuPG79GhCYyMDCEWibDj8DmsXTgOenq6uHLrMep6VUTNyu7oPHg6qlcuj/7dWyEoJBKT5m3A+QPLYWttgSZdf8X0cf3RuU1Dbl1DJixFFc9ymDC8Z5H7WpCQLHJHQgsiAt+QgN8JwPegWguITBVyCcgtjVS/kdxb6WdMNvJWa94vO+knxcHm+n/IcHZHcnVJOiBFbc37QHT/74Yis3yfs6htfZ4O0kR8RAsyEMXPQKwwE50sXFUaK8OWh8ipNVDWopFK/ciYCHwTAt9ISNasXB4te03k/BVNTY1zheT6Hcdx6tJdLJ81ksORzRegz6j5OLJlLtxcS6Nmq5+xZ+10pKZlYNPuk3jzLgQ7V/8PwWHR2Lj7BI5tnS8X4+c3kv3GLISLkwP6dW/F9XkZEIwla/fizsl18H/zgROS909vhKmJEff52u3HuFvRNfN/hXs5J+5ZnrV7vi85cbhj9VSYmUhSqDGByoRjn64tsXLzYdzz9cfBjbO5W1afAf/D2X1/oIyj/Tc5cnmTkpAsckdCCyIC35hAShTw+DAQdEdjC5ngvRAHhN8urU2vxHis2v2v0vt9kRmPv2Kf4V12Mhe1vdGpGcroy77RkDtwfU+gUz3AJn9yd6UXRIZEQJMEvpGQbFqvOrbuO4VD/13F5BG9sWjNXi7Y5n+LNuPmAz+4lM7rTzx6cBcuOGf45BWoX7sSQsKi4eFWBgHvQrnn7bT0TOjp6mDCLz8qLSQbd/0VJsaGKGFjlafP6vljER4ZywlJvyvbcwVjZHQ8Zv6xFbcfvuDEZe/OzTFyYGecuXyf+3nNKu55xmneyAtDerdDcFgU2vWdwonhkxfu4ENoJNYtGq/JU1Z6LhKSSqMiQyJQzAiEPZH4Tqr53K0KraZ1NyCAr/pN5udzsNyShlEhyCzpjHQ3SWSnss1EJELgup1KmScIs/Djh3NoauqI3lbuCBOkYUf8K2wv01yp/rlGHqWB9t5AxTKq9SNrIvCtCXxDIZmekYlm3cdzPoVvP0RwQnLlpkN4+yFcptDafvAMdwPo+/wNTu5ajHcfwrHgz90wMzXGmMFd0bhuNblE2fP38L4d0b1DE/QcPhsdWzfEgB75c8bmPG1/LiRzBmZR5/efvML8VbswdUxf2NpYYPK8Dbh9Yh335C2tMQFsa22OSzd9sXLOaDSqU/Vbn7zU+UlIFsljoUURgSJEIPAa4HcSSI74KouKNXNENY/ZKo1tffci9OOiEN1BkpzOaedyWD65lTtGaoUa+PDLLODjM5Iyg7/75wSMwuMUmgZlp2BpjG9uqp/baZFYF/cce50lT10KW2lboG0toA5Vp1HIigyKJoFvKCQZkP3HLmHB6t2cLyITkswPkj05s4Cadj/UQVJKGi5cewjvmp4o71qa863sNWIuJz73rZ8JgUCIBp1GczeSd/9bD3Oz/BWp3odEws7GEq8DgzFw3GJcPLgCpRxssWXvf5L/lk9GlQquCIuMxeGTVzn/TGlCcveR8/B0d+Z8Itl8XYfOxJTRP6F+rUrcM33nNo3w68/dwR68WZANixJv1USSD/fyLV+Mnf4XnBxL4MyeP4pckE3Ol5OEZNH8a0qrIgJFj8DrC4D/GYA9fRdiO+fWDYMt26g0otOeVZx9aL/fYBTxAW5/jEfwsBlIqegFszdP4bx5AcL6jkOSV2Olx71z+zZcHilOhcTyRg4NuYL6pg54n50M/8wEDLbxRB8rBTkwS9kALWsAjVS7LVV6A2RIBDRF4BsLyaxsPifC9PX0cvNIHj19g/NVZGKNNdcyJbFhyW9wLu0AoVCI+h1HY+yQbuj/8SZx1rJteP02hPNBlNaY8GQClD2Bs9vHYX0lxQaY/+WqzYe5qO2c5l3DEzv+nJorWD+/kdx24AwXKc4ae9pmInHe5MHQ1dXFE79AzFq+DW+DwnM/Z2K4RSMv7s9M8FZvORRTx/TJXbemjliVeUhIqkKLbIkAEQACrgCvzgMsD2UhtEVe07AWLiqNZHfxH9hd/Rev5u+Eud99lDq6BW9m/507hvPfC8G3cUBEt5+VHnd7wCu0OaucX2iUIB1/x7+EhY4BOli4oJyBnGTsLvbAD9WA+hWVXgsZEoEiTUDDQlJZFiw1T1xCMgz09WBhrnr2iM/nYeIzMTkN1pbmUm8C2eexCcmwNDOFkZGB3CXm2NpZW3AC8suWnJIGvkAIGyvzXN9KZnP/8UsM/m0pF8hT0P0oy1AdOxKS6lCjPkSACADBD4GAy0CY6nWqP8fXve5fuMNXLZG5Ueg7uK2YiIgew7nobJf1s/FqsaRmG6t0U37xWCTUa4nYFt2UPqlfYqMwe/9ppW/uizUAAAkJSURBVO0VGlYrCzSpAlRVLYJb4bhkQAS+NQGqta2RExg97U842Flj1oSBGplP3UlISKpLjvoRASIgIcBuJt9eB97eBLLYvzCqNddam5CtfKXG3MFLXDgC+9N7ITQygW5mOuKadgRPJIL587vQS03mbigFZsqXbXThZ+PORlUKCEvZp4UJUM8TaFARYE/Z1IgAESACahAQikQ4ef426tSsyFX0KcqNhGRRPh1aGxH43ggE3ZWkDWK3lUo039JN4OMgCZhRpxmFvYfdpaMwigiGXkoCBObWSHdxR0ybXuBbl1B5yOD9R6EXm6RyP3i5AbU9gFqyq2OoPij1IAJEgAgUfQIkJIv+GdEKicD3RyArDQh+AIQ8AkIfA5B+5bil6hjM1i86KS18r15DyefvlOPNnq5rlANqugEmqj3NKzcBWREBIkAEij4BEpJF/4xohUTg+yYgyJL4UYY/ByL8gNTo3P2MqPMHTggsi8z+Dvn7odGlB9LXY2chyflYyRmo4goYqF9fu8hsmBZCBIgAESggARKSBQRI3YkAEVCRQFI4EP0KiH6DhnZ98Z4vKRlWFNrkyHD8lpPWw94KKFcSKF8KcC8NlLQuCkukNRABIkAEihQBEpJF6jhoMUSg+BGIFYjxLEMEv0whXmaK8DpLhMAsEQRqBOCoQ0+fB5Q31EEFQx3US0/FAH4awFL2mEvq31IjAkSACBAB2QRISNK3gwgQgSJJIChbhA/ZYoTyRQjnixHJF4OJzjihGElCMVKEYqSJgEyxGMIvRKceDzDi8WCiA5jr8mCly4ONLg8l9Hgoqc+Doz4PTvo6cDHgwcWgYKUZiyQ8WhQR+JoEsmOA2MuqzeDYSzV7sv5uCJCQ/G6OihZKBIiALAIiAKKPYlKHB5A0pO8KESACREAzBEhIaoYzzUIEiAARIAJEgAgQAa0jQEJS646UNkQEiAARIAJEgAgQAc0QICGpGc40CxEgAkSACBABIkAEtI4ACUmtO1LaEBEgAkSACBABIkAENEOAhKRmONMsRIAIEAEiQASIABHQOgIkJLXuSGlDRIAIEAEiQASIABHQDAESkprhTLMQASJABIgAESACREDrCJCQ1LojpQ0RASJABIgAESACREAzBEhIaoYzzUIEiAARIAJEgAgQAa0jQEJS646UNkQEiAARIAJEgAgQAc0QICGpGc40CxEgAkSACBABIkAEtI4ACUmtO1LaEBEgAkSACBABIkAENEOAhKRmONMsRIAIEAEiQASIABHQOgIkJLXuSGlDRIAIEAEiQASIABHQDAESkprhTLMQASJABIgAESACREDrCJCQ1LojpQ0RASJABIgAESACREAzBEhIaoYzzUIEiAARIAJEgAgQAa0jQEJS646UNkQEiAARIAJEgAgQAc0QICGpGc40CxEgAkSACBABIkAEtI4ACUmtO1LaEBEgAkSACBABIkAENEOAhKRmONMsRIAIEAEiQASIABHQOgIkJLXuSGlDRIAIEAEiQASIABHQDAESkprhTLMQASJABIgAESACREDrCJCQ1LojpQ0RASJABIgAESACREAzBEhIaoYzzUIEiAARIAJEgAgQAa0jQEJS646UNkQEiAARIAJEgAgQAc0QICGpGc40CxEgAkSACBABIkAEtI4ACUmtO1LaEBEgAkSACBABIkAENEOAhKRmONMsRIAIEAEiQASIABHQOgIkJLXuSGlDRIAIEAEiQASIABHQDAESkprhTLMQASJABIgAESACREDrCJCQ1LojpQ0RASJABIgAESACREAzBEhIaoYzzUIEiAARIAJEgAgQAa0jQEJS646UNkQEiAARIAJEgAgQAc0QICGpGc40CxEgAkSACBABIkAEtI4ACUmtO1LaEBEgAkSACBABIkAENEOAhKRmONMsRIAIEAEiQASIABHQOgIkJLXuSGlDRIAIEAEiQASIABHQDAESkprhTLMQASJABIgAESACREDrCJCQ1LojpQ0RASJABIgAESACREAzBEhIaoYzzUIEiAARIAJEgAgQAa0jQEJS646UNkQEiAARIAJEgAgQAc0QICGpGc40CxEgAkSACBABIkAEtI4ACUmtO1LaEBEgAkSACBABIkAENEOAhKRmONMsRIAIEAEiQASIABHQOgIkJLXuSGlDRIAIEAEiQASIABHQDAESkprhTLMQASJABIgAESACREDrCJCQ1LojpQ0RASJABIgAESACREAzBEhIaoYzzUIEiAARIAJEgAgQAa0jQEJS646UNkQEiAARIAJEgAgQAc0QICGpGc40CxEgAkSACBABIkAEtI4ACUmtO1LaEBEgAkSACBABIkAENEOAhKRmONMsRIAIEAEiQASIABHQOgIkJLXuSGlDRIAIEAEiQASIABHQDAESkprhTLMQASJABIgAESACREDrCJCQ1LojpQ0RASJABIgAESACREAzBEhIaoYzzUIEiAARIAJEgAgQAa0jQEJS646UNkQEiAARIAJEgAgQAc0QICGpGc40CxEgAkSACBABIkAEtI4ACUmtO1LaEBEgAkSACBABIkAENEOAhKRmONMsRIAIEAEiQASIABHQOgIkJLXuSGlDRIAIEAEiQASIABHQDAESkprhTLMQASJABIgAESACREDrCJCQ1LojpQ0RASJABIgAESACREAzBEhIaoYzzUIEiAARIAJEgAgQAa0jQEJS646UNkQEiAARIAJEgAgQAc0QICGpGc40CxEgAkSACBABIkAEtI4ACUmtO1LaEBEgAkSACBABIkAENEOAhKRmONMsRIAIEAEiQASIABHQOgIkJLXuSGlDRIAIEAEiQASIABHQDAESkprhTLMQASJABIgAESACREDrCJCQ1LojpQ0RASJABIgAESACREAzBEhIaoYzzUIEiAARIAJEgAgQAa0jQEJS646UNkQEiAARIAJEgAgQAc0QICGpGc40CxEgAkSACBABIkAEtI4ACUmtO1LaEBEgAkSACBABIkAENEOAhKRmONMsRIAIEAEiQASIABHQOgIkJLXuSGlDRIAIEAEiQASIABHQDAESkprhTLMQASJABIgAESACREDrCPwfYxxlH1HOZW0AAAAASUVORK5CYII=", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = px.pie(data, values='2020', \n", " names='GeoName', \n", " title=\"Top 10 States GDP in 2020 (in million US current dollars)\", \n", " labels={'GeoName':'State', \n", " '2020':'GDP'}\n", " )\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "9df95bdb-c6ef-470b-9102-09ef545bda52", "metadata": {}, "source": [ "### TO DO\n", "\n", "**Question 1.1** Calculate the loss in each disaster as a fraction of the annual Gross Domestic Product (GDP) of the affected country *in the year of the disaster*. Expressed in this way, how do the disasters rank in terms of severity? Please use the values of GDP in the file `Files/GDP_data.csv` from the [World Bank](https://data.worldbank.org/indicator/NY.GDP.MKTP.CD) lass accessed on October 10, 2022." ] }, { "cell_type": "markdown", "id": "5c1eca4a-e882-4bc5-9174-ae3619c435fb", "metadata": {}, "source": [ "**Answer:**" ] }, { "cell_type": "markdown", "id": "75b3cca8-f376-4724-a99d-1e09c72b415b", "metadata": {}, "source": [ "

\n", "

" ] }, { "cell_type": "markdown", "id": "ff491771-8da3-4306-84e8-d50d93402120", "metadata": {}, "source": [ "**Question 1.2** For the two US disasters in the table, calculate the loss as a fraction of the annual economic output (Gross State Product or equivalent) of New York + New Jersey (for hurricane Sandy) and Louisiana (for hurricane Katrina). More than 90% of monetary losses from Katrina occurred in Louisiana, so we will restrict our analysis to this state. Please use the GDP values from `Files/State_GDP_Current_Dollar.csv` from *the year of the disaster*. Be careful about the units. " ] }, { "cell_type": "markdown", "id": "85b31978-ee4c-4c01-992a-30420a06831a", "metadata": {}, "source": [ "**Answer:**" ] }, { "cell_type": "markdown", "id": "f2672021-6ccb-483a-8f91-9b6cae92139b", "metadata": {}, "source": [ "

\n", "

" ] }, { "cell_type": "markdown", "id": "cb3f38c1-6146-4386-bf52-86bd5591bb36", "metadata": {}, "source": [ "**Question 1.3** Based on your ranking of global disasters in the answers above, explore the challenges for different countries to recover from natural disasters. Substantiate your answer with some calculations on the country's road to recovery from the disaster. For this, you can assume that on average, 5% of the GDP is used for funding recovery polices each year, and no foreign aid is provided. \n", "\n", "(A) How many years will it take to fully recover from the economic loss in the absence of foreign aid? \n", "\n", "(B) Comment on the utility of a system of international aid and relief (e.g. United Nations, Red Cross) in response to disasters, especially in developing countries. *Hint:* Think of how Risk = Hazard X Vulnerability is mitigated. " ] }, { "cell_type": "markdown", "id": "c1e83556-a426-4b89-a5f7-d7bb77b51e95", "metadata": {}, "source": [ "**Answer:**" ] }, { "cell_type": "markdown", "id": "414d29b3-0df0-4171-8a9f-5e0029342ebb", "metadata": {}, "source": [ "

\n", "

" ] }, { "cell_type": "markdown", "id": "0c33045d-e8dc-4b35-9d6e-a0c318511838", "metadata": {}, "source": [ "**Question 1.4** Based on your calculations of US disasters in the answers above, explore the ability of different states to recover from natural disasters. Substantiate your answer with some calculations on the state's road to recovery from the disaster. For this, you can assume that on average, 5% of the state GDP is used for funding recovery polices each year, and no federal aid is provided. \n", "(A) How many years will it take to fully recover from the economic loss in the absence of federal aid? \n", "\n", "(B) Comment on the utility of a system of federal aid and relief (US Federal Emergency Management Agency FEMA) in response to domestic disasters. *Hint:* Think of how Risk = Hazard X Vulnerability is mitigated. " ] }, { "cell_type": "markdown", "id": "2341189a-4856-4fc2-b379-5cb96a99667d", "metadata": {}, "source": [ "**Answer:**" ] }, { "cell_type": "markdown", "id": "e80efe6c-bbdd-4577-85f5-cbe892252a05", "metadata": {}, "source": [ "

\n", "

" ] }, { "cell_type": "markdown", "id": "2070429e-8b20-440d-91a3-509faa6a1c03", "metadata": { "jp-MarkdownHeadingCollapsed": true, "tags": [] }, "source": [ "----\n", "### Mini-tutorial\n", "\n", " - **Recurrence Time and Joint Probability**\n", " \n", "The recurrence time is the average time interval between two repeating events. The inverse of the recurrence time is considered as the probability of an event to occur during a year. For example, if the recurrence time is 10 years, then the probability of an event to occur in a year is 1/10. However, if the recurrence time is less than a year, we may need to consider the probability of an event to occure during a shorter a amount of time e.g. 1 month, 3 months etc. to have a probability less than 1.\n", "\n", "Suppose we know the probability of an earthquake occuring in a year, we can determine the probability of an earthquake occuring in $n$ years by first computing the probability of an earthquake **not** occuring during $n$ in years. In order for an earthquake **not** occuring, the following conditions must be met:\n", "\n", "- The earthquake must **not** occur in the 1$^{\\text{st}}$ year.\n", "- The earthquake must **not** occur in the 2$^{\\text{nd}}$ year.\n", "- The earthquake must **not** occur in the 3$^{\\text{rd}}$ year.\n", "- ...\n", "- The earthquake must **not** occur in the n$^{\\text{th}}$ year.\n", "\n", "Since these conditions are independent from each other, we can multiply these probabilities to get the joint probability:\n", "\n", "\\begin{align}\n", " P(\\text{earthquake not occuring in n years}) =&\\ (P(\\text{earthquake not occuring in a year}))^n \\\\\n", " =&\\ (1 - P(\\text{earthquake occuring in a year}))^n \\\\\n", " =&\\ \\left(1 - \\frac{1}{\\text{recurrence time}} \\right)^n\n", "\\end{align}\n", "\n", "Then, the probability of an earthquake *occuring* in $n$ years is \n", "\n", "$$ 1 - P(\\text{earthquake not occuring in n years}) = 1 - \\left(1 - \\frac{1}{\\text{recurrence time}} \\right)^n $$" ] }, { "cell_type": "markdown", "id": "34a3edad-b2ea-4ae0-82ae-554d4099fb6f", "metadata": { "tags": [] }, "source": [ "----\n", "\n", "## Part II: Determining Earthquake Probability from Past Catalogs\n", "\n", "From a human perspective, earthquakes of magnitude 7.0 or greater along the North American/Pacific plate boundary in California are rare. But they do occur and when they do, they can cause devastating injury, loss of life, and property destruction. \n", " \n", "How do we determine the probability of such events, in a way that is useful to guide earthquake awareness and preparedness? What is the basis for earthquake probability maps such as the one presented here?\n", "\n", "One way to estimate the likely of large earthquake occurring within a particular area over a specified period of time is to calculate a probability based on the occurrence of smaller earthquakes in that area. This method assumes that the events are independent of one another, hereas elastic rebound theory holds that after a fault ruptures, it takes time for tectonic stress to re-accumulate on that fault. The **Third Uniform California Earthquake Rupture Forecast (UCERF3)** includes this notion of fault “readiness” in its earthquake forecast, as well as probabilities based on the frequency of small earthquakes. For further background see [https://www.scec.org/ucerf](https://www.scec.org/ucerf).\n", "\n", "\n", "\n", "\n", "For this activity, you will use the historical seismicity to determine the probability of various-sized earthquakes occurring in specific areas over the next year, and over the next 30 years. The data came from [https://earthquake.usgs.gov/earthquakes/search/](https://earthquake.usgs.gov/earthquakes/search/)\n", "\n", "| | San Francisco area (done as class) | Los Angeles area (done individually for your lab report) |\n", "|--|--|--|\n", "|Latitude range |36.25 - 38.75 $^{\\circ}$N |33.5-35.5 $^{\\circ}$N |\n", "|Longitude range |120.75 - 123.25 $^{\\circ}$W|116.75 - 119.75 $^{\\circ}$W|\n", "|Date range |01/01/1983 - 12/31/2012 |01/01/1983 - 12/31/2012 |\n", "|Magnitude ranges|2.0-2.9, 3.0-3.9, up to 9.0-9.9|1-1.9, 2.0-2.9, 3.0-3.9, up to 9.0-9.9|\n", "|Depth range |All |All |\n", "|Data source |United States Geologic Survey|United States Geologic Survey|\n", "|Database |[http://neic.usgs.gov](http://neic.usgs.gov) |[http://neic.usgs.gov](http://neic.usgs.gov) |\n" ] }, { "cell_type": "markdown", "id": "4e0d6320-b1b7-4d8a-b570-7de94921c2d7", "metadata": {}, "source": [ "" ] }, { "cell_type": "markdown", "id": "83d789e6-dd66-4af3-b0ed-31a9eeee8969", "metadata": { "tags": [] }, "source": [ " Example : San Francisco Area\n", "\n" ] }, { "cell_type": "markdown", "id": "8e60a6ba-30d9-4e65-8bc6-cf68e1d0d947", "metadata": {}, "source": [ "| Magnitude range | total \\# of earthquakes 1983-2012 (30 years) | average # of earthquakes per year | MRI (mean recurrence interval in years) | One year probability of earthquake occurring | One year probability of earthquake **not** occurring |\n", "|--|--|--|--|--|--|\n", "| 2.0-2.9 | 1716 | 57.20 | 0.017 | 1.000 | 0.000 |\n", "| 3.0-3.9 | 1326 | 44.20 | 0.023 | 1.000 | 0.000 |\n", "| 4.0-4.9 | 161 | 5.37 | 0.186 | 1.000 | 0.000 |\n", "| 5.0-5.9 | 13 | 0.43 | 2.308 | 0.433 | 0.567 |\n", "| 6.0-6.9 | 3 | 0.10 | 10.000 | 0.100 | 0.900 |\n", "| 7.0-7.9 | 0 | 0.00 | 50 (extrapolated) | 0.020 (extrapolated) | 0.9800 (extrapolated) |\n", "| 8.0-8.9 | 0 | 0.00 | 300 (extrapolated) | 0.0033 (extrapolated) | 0.9967 (extrapolated) |\n", "| 9.0-9.9 | 0 | 0.00 | 1600 (extrapolated) | 0.0006 (extrapolated) | 0.9994 (extrapolated) |" ] }, { "cell_type": "code", "execution_count": 37, "id": "69148f53-5252-43e8-827a-27cc4ced6fe2", "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": 49, "id": "dd8e9230-b2bf-4ed2-9d6f-f94f7f952db4", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
timelatitudelongitudedepthmagmagTypenstgapdminrms...updatedplacetypehorizontalErrordepthErrormagErrormagNststatuslocationSourcemagSource
01983-01-01T01:32:35.610Z38.198000-118.4880003.5992.89ml0.0247.30NaN0.8580...2016-02-02T18:50:21.010Z38km SSE of Hawthorne, NVearthquakeNaNNaN0.0184.0reviewedcici
11983-01-01T02:17:55.930Z35.745500-117.7220005.6802.01mc20.053.00NaN0.1200...2016-02-03T01:12:47.200Z14km NE of Inyokern, CAearthquake0.281.27NaN17.0reviewedcici
21983-01-01T03:56:55.920Z33.933333-118.8120000.3532.16mh21.0194.00NaN0.2100...2016-04-01T23:29:13.318Z8km S of Malibu, CAearthquake0.851.050.30911.0reviewedcici
31983-01-01T04:03:54.690Z35.810000-117.7355005.2452.50ml31.060.00NaN0.1800...2016-04-01T20:13:31.091Z19km NNE of Inyokern, CAearthquake0.341.140.0134.0reviewedcici
41983-01-01T04:12:21.890Z35.816500-117.7390004.9792.85ml35.061.00NaN0.2100...2016-04-02T12:24:09.816Z20km NNE of Inyokern, CAearthquake0.401.070.20210.0reviewedcici
..................................................................
2311572012-12-31T21:00:14.700Z34.914000-119.5930007.5652.43ml44.053.000.150100.2600...2022-07-24T14:45:00.773Z24km SW of Maricopa, CAearthquake0.380.860.16067.0reviewedcici
2311582012-12-31T21:00:40.960Z37.637333-122.4968338.5402.11md97.093.000.017120.0800...2022-07-24T14:43:42.150Z2 km NNW of Pacifica, Californiaearthquake0.140.180.15263.0reviewedncnc
2311592012-12-31T21:22:24.430Z40.434500-123.36483328.9672.42md33.033.000.089190.2100...2017-01-29T05:39:58.660Z12 km E of Mad River, Californiaearthquake0.410.990.13032.0reviewedncnc
2311602012-12-31T22:36:06.070Z38.817833-122.7983331.1002.06md60.020.000.009910.0700...2017-01-29T05:40:38.730Z6 km W of Cobb, Californiaearthquake0.100.180.14231.0reviewedncnc
2311612012-12-31T23:02:17.428Z38.716200-116.6896000.0002.10ml5.0230.451.148000.2014...2018-06-29T20:50:58.679Z63 km SSE of Kingston, NevadaearthquakeNaN0.000.0502.0reviewednnnn
\n", "

231162 rows × 22 columns

\n", "
" ], "text/plain": [ " time latitude longitude depth mag magType \\\n", "0 1983-01-01T01:32:35.610Z 38.198000 -118.488000 3.599 2.89 ml \n", "1 1983-01-01T02:17:55.930Z 35.745500 -117.722000 5.680 2.01 mc \n", "2 1983-01-01T03:56:55.920Z 33.933333 -118.812000 0.353 2.16 mh \n", "3 1983-01-01T04:03:54.690Z 35.810000 -117.735500 5.245 2.50 ml \n", "4 1983-01-01T04:12:21.890Z 35.816500 -117.739000 4.979 2.85 ml \n", "... ... ... ... ... ... ... \n", "231157 2012-12-31T21:00:14.700Z 34.914000 -119.593000 7.565 2.43 ml \n", "231158 2012-12-31T21:00:40.960Z 37.637333 -122.496833 8.540 2.11 md \n", "231159 2012-12-31T21:22:24.430Z 40.434500 -123.364833 28.967 2.42 md \n", "231160 2012-12-31T22:36:06.070Z 38.817833 -122.798333 1.100 2.06 md \n", "231161 2012-12-31T23:02:17.428Z 38.716200 -116.689600 0.000 2.10 ml \n", "\n", " nst gap dmin rms ... updated \\\n", "0 0.0 247.30 NaN 0.8580 ... 2016-02-02T18:50:21.010Z \n", "1 20.0 53.00 NaN 0.1200 ... 2016-02-03T01:12:47.200Z \n", "2 21.0 194.00 NaN 0.2100 ... 2016-04-01T23:29:13.318Z \n", "3 31.0 60.00 NaN 0.1800 ... 2016-04-01T20:13:31.091Z \n", "4 35.0 61.00 NaN 0.2100 ... 2016-04-02T12:24:09.816Z \n", "... ... ... ... ... ... ... \n", "231157 44.0 53.00 0.15010 0.2600 ... 2022-07-24T14:45:00.773Z \n", "231158 97.0 93.00 0.01712 0.0800 ... 2022-07-24T14:43:42.150Z \n", "231159 33.0 33.00 0.08919 0.2100 ... 2017-01-29T05:39:58.660Z \n", "231160 60.0 20.00 0.00991 0.0700 ... 2017-01-29T05:40:38.730Z \n", "231161 5.0 230.45 1.14800 0.2014 ... 2018-06-29T20:50:58.679Z \n", "\n", " place type horizontalError \\\n", "0 38km SSE of Hawthorne, NV earthquake NaN \n", "1 14km NE of Inyokern, CA earthquake 0.28 \n", "2 8km S of Malibu, CA earthquake 0.85 \n", "3 19km NNE of Inyokern, CA earthquake 0.34 \n", "4 20km NNE of Inyokern, CA earthquake 0.40 \n", "... ... ... ... \n", "231157 24km SW of Maricopa, CA earthquake 0.38 \n", "231158 2 km NNW of Pacifica, California earthquake 0.14 \n", "231159 12 km E of Mad River, California earthquake 0.41 \n", "231160 6 km W of Cobb, California earthquake 0.10 \n", "231161 63 km SSE of Kingston, Nevada earthquake NaN \n", "\n", " depthError magError magNst status locationSource magSource \n", "0 NaN 0.018 4.0 reviewed ci ci \n", "1 1.27 NaN 17.0 reviewed ci ci \n", "2 1.05 0.309 11.0 reviewed ci ci \n", "3 1.14 0.013 4.0 reviewed ci ci \n", "4 1.07 0.202 10.0 reviewed ci ci \n", "... ... ... ... ... ... ... \n", "231157 0.86 0.160 67.0 reviewed ci ci \n", "231158 0.18 0.152 63.0 reviewed nc nc \n", "231159 0.99 0.130 32.0 reviewed nc nc \n", "231160 0.18 0.142 31.0 reviewed nc nc \n", "231161 0.00 0.050 2.0 reviewed nn nn \n", "\n", "[231162 rows x 22 columns]" ] }, "execution_count": 49, "metadata": {}, "output_type": "execute_result" } ], "source": [ "earthquakes = pd.read_csv('Files/US_Earthquakes_1983-2012.zip')\n", "earthquakes" ] }, { "cell_type": "markdown", "id": "a03717a9-9a6b-4374-bd8d-d357ecb80447", "metadata": {}, "source": [ "The following lines show how to select earthquakes in a catalog that fall within a range of latitudes and longitudes (i.e. a box):" ] }, { "cell_type": "code", "execution_count": 39, "id": "9b0f2986-1bd3-4b55-b95a-8f12b418d569", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['time', 'latitude', 'longitude', 'depth', 'mag', 'magType', 'nst',\n", " 'gap', 'dmin', 'rms', 'net', 'id', 'updated', 'place', 'type',\n", " 'horizontalError', 'depthError', 'magError', 'magNst', 'status',\n", " 'locationSource', 'magSource'],\n", " dtype='object')" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "earthquakes.columns" ] }, { "cell_type": "code", "execution_count": 68, "id": "3ff4fd30-3910-47f2-b904-32f132619da0", "metadata": {}, "outputs": [], "source": [ "earthquakes_san_francisco = earthquakes[(earthquakes.latitude > 36.25) & (earthquakes.latitude < 38.75) & (earthquakes.longitude > -123.25) & (earthquakes.longitude < 120.75)]" ] }, { "cell_type": "markdown", "id": "53c52dc7-df05-45bd-ba84-dc65c65698ab", "metadata": {}, "source": [ "Now, we can select a range of magnitudes within this catalog:" ] }, { "cell_type": "code", "execution_count": 69, "id": "86c802f2-122a-44f0-ac3e-9f87d664b4cd", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "5131" ] }, "execution_count": 69, "metadata": {}, "output_type": "execute_result" } ], "source": [ "len(earthquakes_san_francisco[(earthquakes_san_francisco.mag >= 3) & (earthquakes_san_francisco.mag < 4)])" ] }, { "cell_type": "markdown", "id": "a991eb08-a50a-4d78-9746-387021229e16", "metadata": {}, "source": [ "Let is make a Python function to do the filtering above, so that we can run these for various regions and magnitude ranges:" ] }, { "cell_type": "code", "execution_count": 70, "id": "fdd8226b-e9ee-48c5-b401-68b016404f48", "metadata": {}, "outputs": [], "source": [ "def catalog_filter(catalog, minlon=None, maxlon=None, minlat=None, maxlat=None, minmag = 0, maxmag = 10):\n", " if minlon==None or maxlon==None or minlat==None or maxlat==None:\n", " catalog_filtered = catalog[(catalog.mag >= minmag) & (catalog.mag < maxmag)]\n", " else:\n", " catalog_filtered = catalog[(catalog.latitude >= minlat) & (catalog.latitude <= maxlat) & \n", " (catalog.longitude >= minlon) & (catalog.longitude <= maxlon) &\n", " (catalog.mag >= minmag) & (catalog.mag < maxmag)\n", " ]\n", " return catalog_filtered" ] }, { "cell_type": "code", "execution_count": 71, "id": "50257b3a-cd1d-438e-87e1-ceaa3bb9b588", "metadata": {}, "outputs": [], "source": [ "earthquakes_san_francisco = catalog_filter(earthquakes, -123.25, -120.75, 36.25, 38.75)\n", "earthquakes_los_angeles = catalog_filter(earthquakes, -119.75, -116.75, 33.5, 35.5)" ] }, { "cell_type": "markdown", "id": "938ca4a8-eaa1-4bd5-a2c1-a4d50196f51d", "metadata": {}, "source": [ "**Question 2.1** The Gutenburg Richter Law is described as $\\log_{10}(N) = a - bM$ where $N$ is the greater of Earthquake smaller than magnitude $M$. In essence, this means that there is an exponentially higher likelihood of small versus large earthquakes. The $b$ value is commonly close to 1.0 in seismically active regions. This means that for a given frequency of magnitude 4.0 or larger events there will be 10 times as many magnitude 3.0 or larger quakes and 100 times as many magnitude 2.0 or larger quakes.\n", "\n", "If earthquakes in both San Francisco and Los Angeles follow the Gutenberg-Richter Law, report the $b$ value in the two regions? Here are the number of earthquakes in Los Angeles for use:\n", "\n", "| Magnitude range | total \\# of earthquakes 1983-2012 (30 years) |\n", "|--|--|\n", "| 1.0-1.9 | 76487 | \n", "| 2.0-2.9 | 21471 | \n", "| 3.0-3.9 | 1830 |\n", "| 4.0-4.9 | 209 |\n", "| 5.0-5.9 | 26 | \n", "| 6.0-6.9 | 2 |\n", "| 7.0-7.9 | 0 |\n", "| 8.0-8.9 | 0 |\n", "| 9.0-9.9 | 0 |\n", "\n", "*Hint:* An example on how to do this for San Francisco is provided below." ] }, { "cell_type": "code", "execution_count": 85, "id": "7c3cc2d2-18e2-4b68-8f27-c8d693269fda", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEYCAYAAABC0LFYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAx5klEQVR4nO3de5xV8/7H8ddnLtVouogamkq6iBQlVArdqBBJh6KIklLn4OCQ4+d6nCKcw+mmCyEaCUVSdKOoJEUlEYpKcima7pfP74/vit2Y2XPbM2uvNZ/n47EfZq2913e9Z2f2Z3+/a63vElXFGGOMyUmC3wGMMcbENysUxhhjorJCYYwxJiorFMYYY6KyQmGMMSYqKxTGGGOiskJhjDEmKisUxhhjorJCYeKeiKwSkVY+Z/hORBr5mcEYv1ihCCgRaSkiH4jIryLyi4i8LyJnFMF+1onILhHJjHhUjfV+olHVk1V1XnHuM5KIHAkcA6wuzn2KiIrIwizrnxKR/8Sg/Xkisjvi33RNlNdOEJHvReQ3EflCRPrk8Lq6XpsTCpvPa6+SiLwmIjtEZL2IXBnltTVFZLqIbBWRzSIyTESS8tJWxHu9Pkub1URkp4j8EovfJ8isUASQiJQHpgH/AyoB6cD9wJ4i2mUnVU2NeGzKJlNSdhuGREPgC1Utqvc3O42AzUB9ETk2y/rlMdrHwIh/03pRXjcYqKmq5YGLgX+JSJNsXjccWBKjbIfa2wukAVcBI0Xk5BxeOwLYAhyLe4/OBW7MY1uNgI3Akd7f1iH/BjYAn8Tgdwk0KxTBdAKAqk5U1QOquktV31bVTwFE5E4R+UpEtovIZyJy6aENvR7CbSLyqdcbeUlEyhQkhNfWHSLyKbBDRJIKs28RqS4ir4rIjyLys4gMi9iuXcTr7hCRjd4+1ohI21y2P8n7Br3NG8a6OJ+/6inACq8t8fa/3mtvkohU8J5LEJF7xA1TbRKRTiKy1+uR5Fcj4CPgHdyHMyKSiCtaywrQXoGp6qqIIqneo3bka0SkG7ANmB2LfYpIWeAy4P9UNVNVFwCvAz1z2OR4YJKq7lbVzcAM4OQ8ttUI956uAup725wGnAW8TzG/3/HICkUwfQEcEJFnRaRjNh9EXwFnAxVwPY0JWb6VXg50wP1xnQL0KkSW7sCFQEVV3V/QfXsfgtOA9UBNXC8pI+vORKQeMBA4Q1XLAe2BdTltLyLJwBvA20AV4K/AC147h9ocISIjovyOpwCfej8/CHQEmuGGo0oD93jP3Qe0856rD9wF/KCqW6O0nZPGuJ7DFKCzt+5EIJEsQ2AiMs0rWtk9pkXZx2AR+UncsGWraGG892gn8DnwPTA94rnywAPArfn4/XJzAnBAVb+IWPcJ3od/Np4AuonIESKSjvs3mpHHtg69158CDbx1jwKDcP+Oywv1m4SBqtojgA/gJGA8rmu8H/cNKS2H1y4HLvF+Xgf0iHjuEWBUlP2sAzJx3xa3AVOyPHddLjnztG+gOfAjkJRDhnbez3VwQwztgOSI12S7Pa5obQYSItZNBO7Lx3u9ELgIN2zxK1A14rmewLtAZWA7UCfiufuB6d7PFYAPvfeyQcRrHgLmA5OBIyLWf4r7Fnykt0053JDJ0hj9/9PUa7M0cI2XvXYu2yQCLYG7s7z3TwB3eD/fB0yIQb6zgc1Z1l0PzIvy97DU+1tQ729D8tJWxHs9APgPrgf3gff77gQaxuI9D/LDehQBpaqrVbWXqlbDfQuqCvwXQESuFpHlh75Ves8fHbH55oifdwKpueyus6pW9B6dszz3XeRCIfZdHVivrleSI1VdC9yM+0DaIiIZ4g6u57R9VeA7VT0YsW49rseRKxER73dYgfvAWaGHH6M5GvcNuy2w1st3SCVvO3C/64W4gnCo7Qa4D+ezgVnAdd760rgPvuXqeiMf4r4hH/rmW2iqulhVt6vqHlV9FjfEckEu2xxQN2xTDejvZW2EK9q5HmD3hv80h8eCLC/PBMpnWVceV9CytpsAzAReBcri/k2OBB7Ora3I9xpXMBoBQ4C/A/Vwoy7FdhJDvLJCEQKq+jnuG1QDETkOGIMbnjlKVSsCKwEpqt0f+qGQ+/4OqCF5OCiuqi+qakvgOG//D0fZfhNQ3fswOaQG7uBlXhwPHFTV9bhew69Znr8EWID7cPq9gHhDYR3xhqxUdZ+q/phl27OBt7yf38J9WwdXmHYBX3vLU3DDT43JZrxcRN6Sw89Ki3y8lfX1OVDy/v9IEn8co2iFG+r7VkQ2A7cBl4nIx3/agWorVZUcHi2zvPwLIElE6kasOxV3HCGrSrgvCsO8wvcz8Ax/FL5obUW+1yu83+dTVV2Ee79X5vblpSSwQhFAInKiiNwqItW85eq4YwWLcN+oFDcMg4hcyx/jrkWtMPv+EPfNfIiIlBWRMiLSIuuLRKSeiLTxvgnuxv2RH4iy/WJgB/APEUn2xuI7kc3xjxz8fiAbd0ZPcxGpLSKpIvIAbjjqady3zrNEpI43Zv8k7sN0RXaNeo7kj8LzK+4DD9wH1CfqjYsAU3Efetn2KFS1ox5+Vlrko2PW14tIRRFp771HSSJyFXAO7lt51tdWEZFu3u+bKCLtcf+vzfFeMtr7PRt5j1HAm7hjRwWmqjtwPYQHvH/PFrii/Hw2r/0J+Abo7/0+FXHDaZ/koa3f32tV3Qa0xn3RgdieYRZoViiCaTtujHmxiOzAFYiVwK2q+hnwGG5c/QfcWTLvF0eowuxbVQ/gPsDrAN/ijr1ckc1LS+OGBn7CDWNVAe7KaXtV3Ysbc+7obTMCuNrrhQEgIqNEZFQO0RryR6/gI9wxhQVe+ycBbVR1p6rOxh37WIY7W2k5brjp82zaPGQr7tgF3n8Pna/fiIgPKK83sw6oSGxO1UwG/oUr6D/hDvB3VtU18HsP5a5Du8cNM23w8j4K3KyqU71sO1V186EHbphndza9p4K4EUjBHZOaCPRX1d97FFlydsGdJPEjsBZ3rOKWPLTViMPf63le4YEYDvUF3aGDPcaYGBKRfsCFqtopy/rxwKOqulJEGgKDVPVKEekLlFbV//kQ15iownyRlDHFRkSa4Ya+vsMd2H4A7/qHiNdMx32DrSciT6nqeHHXY8zHfdO9unhTG5M3gehRiLtg5j3gXlWNdl64Mb4Qkf644Zxk3MHTe1R1evStjAkGXwqFiDyNOy99i6o2iFjfAXdOdiIwVlWHeOsfwB2QXGWFwhhjipdfheIc3EGv5w4VCu90wi+A83AHzpbgzq6oijv1sAzwkxUKY4wpXr4co1DV90SkZpbVZ+IuWPoaQEQycKewpeJOu6wP7BKR6VkunvqTo48+WmvWzNp83uzYsYOyZcsWaNviFqSsEKy8QcoKwcobpKwQrLyFybp06dKfVLVyds/F08HsdA6/yncD0FRVBwKISC9cjyLbIuGdNdIXIC0tjUcffbRAITIzM0lNze1C5fgQpKwQrLxBygrByhukrBCsvIXJ2rp16/U5PRdPhSK7q0J/HxdT1fHRNlbV0SLyPdCpXLlyTVq1alWgEPPmzaOg2xa3IGWFYOUNUlYIVt4gZYVg5S2qrPF0wd0G3GX4h1QjYkqEvFDVN1S1b4UKFXJ/sTHGmDyJp0KxBKgrIseLSCmgG25G1DwTN///6F9/zTodjzHGmILypVCIyETcNA/1RGSDiPT2Jt4aiJtvZjXuJiTZTQCWI+tRGGNM7Pl11lP3HNZPJ+KGKPklIp2ATnXq1CloE8YYY7KIp6GnQrMehTHGxF6oCoUxxpjYC1WhKPTB7MWjOfKX5THNZIwxQReqQlGooacD+2DpM5z66b0wZQDs2hr7gMYYE0ChKhSF6lEkJsP1c1lfoyt8MhGGN4XVb8Q+pDHGBEyoCkWhD2Ynl+GbWj2h71xIrQIv9YBJV8P2H2Ib1BhjAiRUhSJmjj0Vrp8Lbe+BNTNg+Jmw/EUIwL07jDEm1qxQ5CQxGc6+FfotgMonwpT+MOEy2Pat38mMMaZYhapQFOYYxZRlG2kxZA69ZuygxZA5TFm20T1R+QS49i3oOBS+XQTDm8Hi0XAw6kznxhgTGqEqFAU9RjFl2UYGvbqCjdt2AbBx2y4Gvbrij2KRkABN+8KARVCjGbx1OzzTEX76Mta/gjHGxJ1QFYqCGjpzDbv2HThs3a59Bxg6c83hL6xYA3q8Ap1HwY+fw8gWMP8xd2qtMcaElBUKYJPXk8jTehFo1B0GLoF6HWD2AzCmNXz/SRGnNMYYf4SqUBT0GEXViin5Wg+402cvfw4ufx4yt8Do1jDrPti3O1/7NsaYeBeqQlHQYxS3t69HSnLiYetSkhO5vX293DeufzEMWAyndocF/4FRLWD9wnzt3xhj4lmoCkVBdW6czuAuDUn3ehDpFVMY3KUhnRun562BlCOh83Do+Roc2AvPdIA3b4M924swtTHGFI94ume2rzo3Tqdz4/TC3XO2dhvovxDmPAiLn4IvZsBF/4W67WIZ1RhjipX1KGKtdCp0fBiumwnJKfDCZfBaP9j5i9/JjDGmQKxQFJUaTeGG+XDO7bDiZTcNyKopNg2IMSZwQlUoCn0/ilhLLgNt7oa+86B8Orx8jZtocPtmv5MZY0yehapQxO2tUI9pCH1mQ7v7Ye0s17tYNsF6F8aYQAhVoYhriUnQ8mbo9z5UORmmDoDnO8PWdfluKsd5qYwxpghYoShuR9eBXm/ChY/Bho9gRHNYNBIOHsh9W/IwL5UxxsSYFQo/JCTAGX3gxkVwXAuYcSc83QG2fJ7rpnmel8oYY2LECoWfKlaHq16GS0fDz2vhqbPh3aFRJxnM17xUxhgTA1Yo/CYCp14BAz6EEy+Cuf+C0a1g07JsX16geamMMaYQrFDEi9TK8JdnoNuLsOMnGNMG3rkH9h3eUyjUvFTGGFMAcV8oROQkERklIpNFpL/feYrciRe6SQYb94D3n4CRZ8G6Bb8/Xeh5qYwxJp98KRQi8rSIbBGRlVnWdxCRNSKyVkTuBFDV1araD7gcON2PvMUupSJc/D+4eqo7G2r8hTDtFtj9G+CKxft3tmF8h7K8f2cbKxLGmCLlV49iPNAhcoWIJALDgY5AfaC7iNT3nrsYWADMLt6YPqvVCm5cCM0GwEfPwIhm8MXbfqcyxpQwoj5dHSwiNYFpqtrAW24O3Keq7b3lQQCqOjhimzdV9cIc2usL9AVIS0trkpGRUaBcmZmZpKamFmjbolT+1zXUW/M/yu78jh+qnMvaOn3YujchLrPmJF7f2+wEKSsEK2+QskKw8hYma+vWrZeqarajNvE0zXg68F3E8gagqYi0AroApYHpOW2sqqNF5HugU7ly5ZoUdKrwQk0zXqRawf5eMP9x0uY/SlrmKlbV7MXJF97tzpwKgPh9b/8sSFkhWHmDlBWClbeossbTwezsPu1UVeep6t9U9QZVHR6tgbid6ylWkkpD60Fww3tQsTonf/YoZFwJv23yO5kxJsTiqVBsAKpHLFcD8vUJGHezxxaVtJOh9yzW1r4WvpoDw5vC0vE2yaAxpkjEU6FYAtQVkeNFpBTQDXg9Pw2EvkcRKTGJDdU7Q/8P4JhT4I2b4NlO8MvXficzxoSMX6fHTgQWAvVEZIOI9FbV/cBAYCawGpikqqvy2W7J6FFEOqo2XPOGu+XqpuUw4iz4YFieJxk0xpjc+FIoVLW7qh6rqsmqWk1Vx3nrp6vqCapaW1UfKkC7JadHESkhAU6/1l2oV+tcePufMO48+OEzv5MZY0IgnoaeTGFVSIfuGXDZOHefi6fOgXlDYP9ev5MZYwIsVIWiRA49ZSUCDbu6SQZP7gzzBsPoc2HDUr+TGWMCKlSFosQOPWWn7NFw2VjXw9i1Dca1g5n/hL07/U5mjAmYUBUK61Fko15HGLAITrsGFg6Dkc3hm/f8TmWMCZBQFQrrUeSgTAXo9F93dhTiTqN94ybYbQXVGJO7UBUKk4vjz3HXXZz1V/j4OXeh3pq3/E5ljIlzVihKmlJHwPn/gj6zIKUSTOwGk3u7myUZY0w2QlUo7BhFPqQ3gb7zoNVd8NlUGHYGfPqyTQNijPmTUBUKO0aRT0mloNUd0G8+VKoFr/aBF6+AXzf4ncwYE0dCVShMAVU5CXq/De3/7c6IGt4MPnoaDh70O5kxJg5YoTBOQiI0H+DuqJfe2N169dlO8PNXficzxvgsVIXCjlHEQKXj4erX3T27N6+AkWfB+0/Agf1+JzPG+CRUhcKOUcSICJx2tZtksHZbeOced2X35pV+JzPG+CBUhcLEWPljodsL0PUZ2PadmzNqzkOwf4/fyYwxxcgKhYlOBBp0gYFLoMFl8N4jblba75b4ncwYU0ysUJi8OaISdBkNV74Me7a7+13MGAR7d/idzBhTxKxQmPw54Xy4cRGc0RsWjYARzeHreVE3mbJsIy2GzKHXjB20GDKHKcs2Fk9WY0xMhKpQ2FlPxaRMebjwMeg1HRKS4LlLYOpAN515FlOWbWTQqyvYuG0XABu37WLQqyusWBgTIKEqFHbWUzGr2QL6vw8tboblL7pJBldPO+wlQ2euYde+w+/fvWvfAYbOXFOMQY0xhRGqQmF8kJwC590P18+GspXhpatg0jWQuQWATV5PIquc1htj4o8VChMbVRtD37nQ5m5YMx2GnwmfZFC1QpnsX14xpZgDGmMKygqFiZ3EZDjndui3AI6qC6/dwCsV/kOt5K2HvSwlOZHb29fzKaQxJr+sUJjYq1wPrpsBHR/hmK0fM7PU7QxMnYdwkPSKKQzu0pDOjdP9TmmMyaMkvwOYkEpIhKY3wAkdSH7jJm77ejR90hZQsedzcLQVCWOCxHoUpmgdeRz0fA0uGU7ZHethZAuY/7hNMmhMgMR9oRCRziIyRkSmisj5fucxBSACjXuw5IxhUPc8mH0/jG0D33/qdzJjTB74UihE5GkR2SIiK7Os7yAia0RkrYjcCaCqU1T1eqAXcIUPcU2M7C1dyU0yePlz8Nv3MLoVzH4A9u32O5oxJgq/ehTjgQ6RK0QkERgOdATqA91FpH7ES+72njdBV/8SN4X5KVfA/MfgqbPh28V+pzLG5EBU1Z8di9QEpqlqA2+5OXCfqrb3lgd5Lx3iPd5R1VlR2usL9AVIS0trkpGRUaBcmZmZpKamFmjb4hakrJB93iN/+Zh6a0ZQes9PbEy/gG+O78mBJP+vsQjDexuvgpQVgpW3MFlbt269VFVPz/ZJVfXlAdQEVkYsdwXGRiz3BIYBfwOWAqOAfnlpu0mTJlpQc+fOLfC2xS1IWVWj5N39m+qbt6neW0H18QaqX84qzljZCs17G4eClFU1WHkLkxX4SHP4TI2ng9mSzTpV1SdVtYmq9lPVUVEbsEkBg6l0ObhgKFz7FiSVhgldYMqNsPMXv5MZY4ivs542ANUjlqsBm3zKYvxwXHN3VXfLv8MnGW6Swc+m+p3KmBIvngrFEqCuiBwvIqWAbsDr+WlAbfbY4EsuA+3udfNGlTsGJl0NL/WE7T/4ncyYEsuv02MnAguBeiKyQUR6q+p+YCAwE1gNTFLVVfls14aewuLYU+H6OdD2XvhipptkcNkL4NPJF8aUZL4UClXtrqrHqmqyqlZT1XHe+umqeoKq1lbVhwrQrvUowiQxGc7+u7vnRZWTYOqN8PylsHW938mMKVHiaejJmOwdXdfdTe+CR2HDEnf71cVPwcGDficzpkQIVaGwoacQS0iAM6+HGxdCjWbw1j/gmQ7wo90pz5iiFqpCYUNPJUDFGtDjFeg8yhWJUS3hvUfhwD6/kxkTWqEqFKaEEIFG3WHgEqh3Acx5EMa0hk3L/U5mTCiFqlDY0FMJk1oFLn8Wrpjg7tE9pg3Mug/22f24jYmlUBUKG3oqoU7q5CYZbNQdFvzHDUet/8DvVMaERqgKhSnBUo6ES4ZDzylwYC880xHevBX2bPc7mTGBF6pCYUNPhtqtof9CaNofloyD4c3gy3f8TmVMoIWqUNjQkwGgdCp0HAK934ZSZeGFrvDqDTbJoDEFFKpCYcxhqp8J/ebDOf+AlZPdNCCrXrNpQIzJJysUJtySSkObf0LfeVA+HV7uBS/1cLdiNcbkSagKhR2jMDk6piH0mQ3nPQBrZ7kpzD9+znoXxuRBqAqFHaMwUSUmQYuboN/7cEwDeP2v8Nwl8Ms3ficzJq6FqlAYkydH14FrpsGFj8PGj2HkWbBwBBw84HcyY+KSFQpTMiUkwBm9YcAiqNkSZg6Cp9vDls/9TmZM3LFCYUq2CtXgyknQZQz8/BU8dTa8+why0CYZNOYQKxTGiMApl8OAD910IHMfosnSW2HjUr+TGRMXrFAYc0hqZej6NHSbSPK+7TC2Hbz9f7B3p9/JjPFVqAqFnR5rCmvKso20mFKGM357mKkJbeGDJ2FUC1i3wO9oxvgmVIXCTo81hTFl2UYGvbqCjdt28RtluWnHtfQ68H/s2L0Pxl8I026B3b/5HdOYYheqQmFMYQyduYZd+w4/RXbevpPodGAoNB8IS8fDiGbwxUx/AhrjEysUxng2bcv+hkff/HoQ2j8Evd+B0uXhxcvhlT6w46diTmiMP6xQGOOpWjEl+vpqp8MN78G5d8KqKW6SwRWTbRoQE3pWKIzx3N6+HinJiYetS0lO5Pb29f5YkVQKWg+CG96FisfBK71hYnf4bVMxpzWm+FihMMbTuXE6g7s0JN3rQaRXTGFwl4Z0bpz+5xennQx9ZsH5D8HX89wkg0vHW+/ChFKS3wFyIyK1gH8CFVS1q995TLh1bpxO58bpzJs3j1atWkV/cUIinDUQTrwAXv8bvHGTG4q6+EmoVKtY8hpTHHzpUYjI0yKyRURWZlnfQUTWiMhaEbkTQFW/VtXefuQ0Jk8q1YJr3oBOT8D3n8CIs+CD/9kkgyY0/Bp6Gg90iFwhIonAcKAjUB/oLiL1iz+aMQUgAk16wYDFUKsVvH23u7L7h8/8TmZMoYn6NKYqIjWBaarawFtuDtynqu295UEAqjrYW54cbehJRPoCfQHS0tKaZGRkFChXZmYmqampBdq2uAUpKwQrb6GyqlJly3zqrB1D0v6dfFujK+uP64omJMc2ZIQS8976IEh5C5O1devWS1X19GyfVFVfHkBNYGXEcldgbMRyT2AYcBQwCvgKGJSXtps0aaIFNXfu3AJvW9yClFU1WHljkjXzJ9XJvVXvLa86rKnqdx8Vvs0clLj3thgFKW9hsgIfaQ6fqfF01pNks05V9WdV7aeqtdXrXeTYgM31ZOJJ2aPgsrHQ/SXY/SuMawcz/2mTDJrAiXrWk4jcE+VpVdUHY5hlA1A9YrkakK+T01X1DeCN008//foY5jKmcOp1gOPOgln3wsJh8Pk06PQk1DrX72TG5EluPYod2TwU6A3cEeMsS4C6InK8iJQCugGv56cB61GYuFWmPFz0H+j1JkgCPHexu2f3rm1+JzMmV1ELhao+dugBjAZSgOuADKDAJ4qLyERgIVBPRDaISG9V3Q8MBGYCq4FJqroqP+2qzR5r4l3NltDvfTjrb7Bsgptk8PPpfqcyJqpcL7gTkUrA34GrgGeB01R1a2F2qqrdc1g/HSjwX42IdAI61alTp6BNGFP0Sh0B5z8IJ18KUwdCRnc4uQt0fMTdPMmYOBO1RyEiQ3FDQtuBhqp6X2GLRFGyHoUJlPTToO88aP1PWP2Gm2Tw00k2DYiJO7kdo7gVqArcDWwSkd+8x3YRibs7uNgxChM4SaXg3H9AvwVwVG149Xp48Qr4dYPfyYz5XW7HKBJUNUVVy6lq+YhHOVUtX1wh88p6FCawqpwI182EDkNg3XwY3gyWjIODB/1OZkxcXUdhTMmWkAjN+kP/D9yw1Jt/h2cvgp+/8juZKeFCVShs6MmEQqXj4eqpcPEw2LwSRp4FC/4LB/b7ncyUUKEqFDb0ZEJDBE7r6SYZrNPOXaw3ti1sXuF3MlMChapQGBM65Y+FKybAX8bDbxthdCuY8y/Yv8fvZKYECVWhsKEnE0oi7pqLAR9Cw7/Ae0Nh1Nnw3Yd+JzMlRKgKhQ09mVA7ohJcOgqumgx7d8C48+GtO2FPpt/JTMiFqlAYUyLUPQ8GLIIz+sDikWwa0pgxby+ixZA5TFm20e90JoSsUBgTRKXLMaXqLfQ4cB+7DyTwQqnB/C3zCQa/utCKhYk5KxTGBNTQmWtYsO8EOu4dwoj9F3NZ4nu8kXAri6c/63c0EzKhKhR2MNuUJJu27QJgD6V4ZH83Ltn7ID9qBQbvexgmXQOZW3xOaMIiVIXCDmabkqRqxZTDllfp8Vyy90GeSroK1kyHYWfA8ok2yaAptFAVCmNKktvb1yMlOfGwdcnJpUm78J/unheV68GUfjDhMtj2rU8pTRhYoTAmoDo3Tmdwl4akez2L9IopDO7SkM6N06HyCXDtDHePi28XwYjm8OEYm2TQFEiuNy4yxsSvzo3T6dw4nXnz5tGqVavDn0xIgKY3wAkdYNrNMP02WPkKXPw/OLquH3FNQFmPwpiwO/I46PEqdB4JW1bDyBYw/3E4sM/vZCYgQlUo7KwnY3IgAo2udNOAnNAeZt8PY9rA95/4ncwEQKgKhZ31ZEwuyqXBFc/D5c/B9s0wujXMfgD27fY7mYljoSoUxpg8qn+Jm8L81G4w/zEY1dId9DYmG1YojCmpjqgEnUe44xf798DTHWD67bBnu9/JTJyxQmFMSVenLdy40J0h9eEYdyrt2ll+pzJxxAqFMQZKp0LHh+G6GZCc4i7Se60/7PzF72QmDlihMMb8oUYzuGE+nH0bfPoSDG8Kn031O5XxWdwXChEpKyLPisgYEbnK7zzGhF5yGWj7f9B3HpQ7BiZdDS/1cGdJmRLJl0IhIk+LyBYRWZllfQcRWSMia0XkTm91F2Cyql4PXFzsYY0pqY49Ba6fC+3ugy/ehuFnwrIJNslgCeRXj2I80CFyhYgkAsOBjkB9oLuI1AeqAd95LztQjBmNMYlJ0PIW6P8BVDkZpg6A5y+Frev9TmaKkahP3w5EpCYwTVUbeMvNgftUtb23PMh76QZgq6pOE5EMVe2WQ3t9gb4AaWlpTTIyMgqUKzMzk9TU1AJtW9yClBWClTdIWaGY8upBqm6aQa2vn0UUvq7Vg43pF4Ak5r5tBHtvi05hsrZu3Xqpqp6e7ZOq6ssDqAmsjFjuCoyNWO4JDAPKAs8AI4Gr8tJ2kyZNtKDmzp1b4G2LW5CyqgYrb5CyqhZz3q3fqj7fRfXe8qpjz1Pd8nm+Nrf3tugUJivwkebwmRpPB7Mlm3WqqjtU9VpV7a+qL0RtwOZ6MqboVawOV02GS5+Cn75wV3W/N9QmGQyxeCoUG4DqEcvVgE35aUBtridjioeIm/5jwIdw4oUw519u3qhNy/1OZopAPBWKJUBdETleREoB3YDX89OA9SiMKWapVeAv4+GKF2DHj25G2nfuhX27/E5mYsiv02MnAguBeiKyQUR6q+p+YCAwE1gNTFLVVflp13oUxvjkpIvcJIONroT3/+vuebHufb9TmRjxpVCoandVPVZVk1W1mqqO89ZPV9UTVLW2qj6U33atR2GMj1IqwiXD4OqpcHA/jL8A3rwVdv/mdzJTSPE09FRo1qMwJg7UauUmGWx2IywZ5yYZ/PIdv1OZQghVobAehTFxolRZ6DAYer/jJhx8oSu8eoNNMhhQoSoU1qMwJs5UPwNueA/OvQNWToZhZ1B5ywKbBiRgQlUojDFxKKk0tL4L+r4LFatz8mdDIeMq+O17v5OZPApVobChJ2Pi2DENoPcsvqrVC76a7aYw//g5610EQKgKhQ09GRPnEpP4rsalbpLBYxrC63+F5y6GX77xO5mJIlSFwhgTEEfVhmvegIv+AxuXwcizYOEIOGgTRMejUBUKG3oyJkASEuD069yFejXPhpmDYNz5sGW138lMFqEqFDb0ZEwAVUiHK1+Cy8bB1m9g1Nnw7iOwf6/fyYwnVIXCGBNQItCwq5tksP7FMPchGN0KNi71O5nBCoUxJp6UPRq6Pg3dM2DXVhjbDt6+G/bu9DtZiWaFwhgTf+p1hAGL4LSr4YP/wagW8M18v1OVWKEqFHYw25gQKVMBOj3hzo5ShWcvgjduht32913cQlUo7GC2MSF0/DnuuovmA+HjZ2F4M/hipt+pSpRQFQpjTEiVOgLaPwS9Z7npzF+8HF7pAzt+8jtZiWCFwhgTHNWauDmjWg2CVVNg+JmwYrJNA1LErFAYY4IlqRS0utPNSntkTXilN0zsBr9u9DtZaFmhMMYEU1p9d7+L9v+Gr9+FEc3go2fg4EG/k4VOqAqFnfVkTAmTkAjNB8CNH8Cxp8K0m90kgz9/5XeyUAlVobCznowpoSrVcqfRdnoSvv8ERrZw11/YJIMxEapCYYwpwUSgyTVuksFardwV3WPbwQ+r/E4WeFYojDHhUr4qdJ/opgLZ9i08dQ7M/Tfs3+N3ssCyQmGMCR8RaHCZm2Tw5C7w7sPw1Lmw4SO/kwWSFQpjTHiVPQouGwNXToI9v7mhqBl3wd4dficLFCsUxpjwO6E93LjI3Shp0XB3R72v3/U7VWDEfaEQkVoiMk5EJvudxRgTYGXKw0WPQ683QRLcabSv/xV2bfM7Wdwr0kIhIk+LyBYRWZllfQcRWSMia0XkzmhtqOrXqtq7KHMaY0qQmi3dJIMtboJlE9yFep9P9ztVXCvqHsV4oEPkChFJBIYDHYH6QHcRqS8iDUVkWpZHlSLOZ4wpiZJT4LwHoM9sOOIoyOgOL18LmT/6nSwuiRbxZFoiUhOYpqoNvOXmwH2q2t5bHgSgqoNzaWeyqnaN8nxfoC9AWlpak4yMjALlzczMJDU1tUDbFrcgZYVg5Q1SVghW3njLKgf3U+PbVzlu/UscSExhbZ0+/JB2rjtzivjLG01hsrZu3Xqpqp6e7ZOqWqQPoCawMmK5KzA2YrknMCzK9kcBo4CvgEF52WeTJk20oObOnVvgbYtbkLKqBitvkLKqBitv3Gb9YbXqmLaq95ZXndBVddt3qhrHebNRmKzAR5rDZ6ofB7Mlm3U5dmtU9WdV7aeqtTX3XofN9WSMKZgqJ8J1M6HDEFi3wN0gaclYUJtk0I9CsQGoHrFcDdgUi4bV5noyxhRGQiI06w83LnT3vnjzVhotvxt+Wut3Ml/5USiWAHVF5HgRKQV0A16PRcPWozDGxMSRNaHnFLhkOGV3rINRLWDBf+HAfn9z+aSoT4+dCCwE6onIBhHprar7gYHATGA1MElVYzJrl/UojDExIwKNe7DkjGFQpx3MuhfGtoHNK/xOVuySirJxVe2ew/rpQMxPXBaRTkCnOnXqxLppY0wJtbd0JbhiAnw2FabfBqNbQctb4JzbIam03/GKRdxfmZ0f1qMwxhQJETi5s5tksOFf4L2hMOps+O5Dv5MVi1AVCjtGYYwpUkdUgktHwVWvwL6dMO58eOtO2JPpd7IiFapCYT0KY0yxqNvOnRl15vWweCSMbA5fzfE7VZEJVaEwxphiU7ocXDAUrp0BiaXh+UthygDYtdXvZDEXqkJhQ0/GmGJ3XHPotwBa/h0+mQjDm8LqN/xOFVOhKhQ29GSM8UVyGWh3L1w/B1KrwEs9YNLVsP0Hv5PFRKgKhTHG+KpqI7h+LrS9B9bMgOFnwvKJUMSTrxa1UBUKG3oyxvguMRnOvtUNR1U+Eab0gwmXwbZv/U5WYKEqFDb0ZIyJG5VPgGvfgo5D4dtFbpLBxaPhYPAmGQxVoTDGmLiSkABN+8KARVCjGbx1OzzTEX760u9k+WKFwhhjilrFGtDjFeg8En78HEa2gPmPwYF9fifLEysUxhhTHESg0ZVuGpB6HWD2AzCmDXz/id/JchWqQmEHs40xca9cGlz+HFz+PGzfDKNbw6z7Yd9uv5PlKFSFwg5mG2MCo/7FMPBDOLU7LHgcRrWE9Qv9TpWtUBUKY4wJlJQjofNw6PkaHNgDz3SAN2+DPdv9TnYYKxTGGOO32m2g/0Jo2s/dp3tEc1g7y+9Uv7NCYYwx8aB0KnR8GK6bCckp7iK91/rBzl/8TmaFwhhj4kqNpnDDfDj7NljxspsGZNUUXyOFqlDYWU/GmFBILgNt/8/NG1W+Krx8DWRc5c6S8kGoCoWd9WSMCZVjT4E+c6DdffDlO653sWxCsU8yGKpCYYwxoZOYBC1vgf4fQJWTYeoAeL4zbF1XbBGsUBhjTBAcXQd6vQkXPgYbPnJnRi0aBQcPFPmurVAYY0xQJCTAGX3gxkVwXAuYcQc83QF+XFO0uy3S1o0xxsRexepw1ctw6Wj4+Ut3Vfd7Q5GD+4tkd1YojDEmiETg1CtgwBI48UKY8y+aLL21SM6MivtCISKdRWSMiEwVkfP9zmOMMXEltTL8ZTxc8QK7Uo6BspVjvosiLRQi8rSIbBGRlVnWdxCRNSKyVkTujNaGqk5R1euBXsAVRRjXGGOC66SLWNVgECQkxrzppJi3eLjxwDDguUMrRCQRGA6cB2wAlojI60AiMDjL9tep6hbv57u97YwxxhSjIi0UqvqeiNTMsvpMYK2qfg0gIhnAJao6GLgoaxsiIsAQ4C1V/bgo8xpjjPkz0SK+ws8rFNNUtYG33BXooKp9vOWeQFNVHZjD9n8DrgGWAMtVdVQOr+sL9AVIS0trkpGRUaC8mZmZpKamFmjb4hakrBCsvEHKCsHKG6SsEKy8hcnaunXrpap6enbPFfXQU3Ykm3U5VitVfRJ4MrdGVXW0iHwPdCpXrlyTVq1aFSjcvHnzKOi2xS1IWSFYeYOUFYKVN0hZIVh5iyqrH2c9bQCqRyxXAzbFomGb68kYY2LPj0KxBKgrIseLSCmgG/B6LBq22WONMSb2ivr02InAQqCeiGwQkd6quh8YCMwEVgOTVHVVLPZnPQpjjIm9oj7rqXsO66cD02O9PxHpBHSqU6dOrJs2xpgSq8jPevKDiPwIrC/g5kcDP8UwTlEKUlYIVt4gZYVg5Q1SVghW3sJkPU5Vs72sO5SFojBE5KOcThGLN0HKCsHKG6SsEKy8QcoKwcpbVFnjfq4nY4wx/rJCYYwxJiorFH822u8A+RCkrBCsvEHKCsHKG6SsEKy8RZLVjlEYY4yJynoUxhhjorJCYYwxJiorFICIVBeRuSKyWkRWichNfmeKRkTKiMiHIvKJl/d+vzPlRkQSRWSZiEzzO0tuRGSdiKwQkeUi8pHfeaIRkYoiMllEPvf+/23ud6aciEg97z099PhNRG72O1dOROQW7+9rpYhMFJEyfmeKRkRu8rKuivX7ascoABE5FjhWVT8WkXLAUqCzqn7mc7RseffoKKuqmSKSDCwAblLVRT5Hy5GI/B04HSivqn+670g8EZF1wOmqGvcXWYnIs8B8VR3rzZ12hKpu8zlWrrwbmG3E3WKgoBfHFhkRScf9XdVX1V0iMgmYrqrj/U2WPRFpAGTg7vezF5gB9FfVL2PRvvUoAFX9/tBNkVR1O24OqnR/U+VMnUxvMdl7xG3FF5FqwIXAWL+zhImIlAfOAcYBqOreIBQJT1vgq3gsEhGSgBQRSQKOIEazXBeRk4BFqrrTm0/vXeDSWDVuhSIL70ZLjYHFPkeJyhvKWQ5sAd5R1XjO+1/gH8BBn3PklQJvi8hS74ZY8aoW8CPwjDesN1ZEyvodKo+6ARP9DpETVd0IPAp8C3wP/Kqqb/ubKqqVwDkicpSIHAFcwOG3cygUKxQRRCQVeAW4WVV/8ztPNKp6QFUb4e7ncabX9Yw7InIRsEVVl/qdJR9aqOppQEdggIic43egHCQBpwEjVbUxsAO4099IufOGyC4GXvY7S05E5EjgEuB4oCpQVkR6+JsqZ6q6GngYeAc37PQJsD9W7Vuh8Hhj/a8AL6jqq37nyStvqGEe0MHfJDlqAVzsjftnAG1EZIK/kaJT1U3ef7cAr+HGfePRBmBDRG9yMq5wxLuOwMeq+oPfQaJoB3yjqj+q6j7gVeAsnzNFparjVPU0VT0H+AWIyfEJsEIB/H5weBywWlUf9ztPbkSksohU9H5Owf1P/bmvoXKgqoNUtZqq1sQNN8xR1bj9ZiYiZb0TGvCGcc7HdevjjqpuBr4TkXreqrZAXJ6AkUV34njYyfMt0ExEjvA+H9rijl3GLRGp4v23BtCFGL7HftwzOx61AHoCK7xxf4C7vPtmxKNjgWe9M0cScDd/ivvTTgMiDXjNfTaQBLyoqjP8jRTVX4EXvOGcr4Frfc4TlTd+fh5wg99ZolHVxSIyGfgYN4SzjPifyuMVETkK2AcMUNWtsWrYTo81xhgTlQ09GWOMicoKhTHGmKisUBhjjInKCoUxxpiorFAYY4yJygqFMT4QkX4icrX3cy8RqVqANtaJyNGxT2fM4ew6CmN8oKqjIhZ74S7qi+dJ50wJZj0KY3CTQXr3dBjrzen/goi0E5H3ReRLETnTe3zgTcD3waEror2rdyeJyKci8pKILBaR073nMkXkIe/eIYtEJM1bf5+I3CYiXXHTr7/g3aMhJbKnICKni8g87+ejRORtb/9PARKRv4e4e5QsF5GnvIsxjYkJKxTG/KEO8ARwCnAicCXQErgNuAs3Tco53gR89wD/9ra7EdiqqqcADwJNItosi5v++VTgPeD6yB2q6mTgI+AqVW2kqrui5LsXWODt/3WgBoCInARcgZvMsBFwALiqIG+AMdmxoSdj/vCNqq4AEJFVwGxVVRFZAdQEKuCmTqmLm4o82duuJa7AoKorReTTiDb3AoemV1mKm76ioM7BzeGDqr4pIoemaGiLK05LvKlHUnDTzxsTE1YojPnDnoifD0YsH8T9rTwIzFXVS737lszznhdytk//mCfnAHn7m9vPH739rLffzG7OHQGeVdVBeWjbmHyzoSdj8q4C7vad4A5AH7IAuBxAROoDDfPZ7nagXMTyOv4YvrosYv17eENKItIRONJbPxvoGjF7aCUROS6fGYzJkRUKY/LuEWCwiLwPRB4sHgFU9oac7gA+BX7NR7vjgVGHDmYD9wNPiMh8XC/kkPtxdzH7GDf9+bcA3r3d78bdle9T3M1rji3A72dMtmz2WGMKyTvDKFlVd4tIbdw3/BNUda/P0YyJCTtGYUzhHQHM9e6SKEB/KxImTKxHYYwxJio7RmGMMSYqKxTGGGOiskJhjDEmKisUxhhjorJCYYwxJqr/B3qVGTLdQD3XAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# magnitude from the table (lower bound from each range)\n", "M = np.arange(2,10)\n", "\n", "# number of earthquakes for each magnitude range\n", "n = np.array([1716,1326,161,13,3,0,0,0])\n", "\n", "# number of earthquakes with magnitude greater than or equal to M\n", "N = np.cumsum(n[::-1])[::-1]\n", "\n", "# manual sum\n", "#N = np.array([3219, 1503, 177, 16, 3, 0, 0, 0])\n", "\n", "#Fit a straight line to find the parameter \n", "p = np.polyfit(M[n>0], np.log10(N[n>0]), 1)\n", "a = p[1]\n", "b = -p[0]\n", "N_fit = 10 ** (a - b * np.array(M))\n", "\n", "import matplotlib.pyplot as plt\n", "plt.figure()\n", "plt.semilogy(M, N, 'o')\n", "plt.plot(M, N_fit)\n", "plt.title('San Francisco: $log_{10}N = %.2f - %.2f M$' % (a, b))\n", "plt.xlabel('magnitude')\n", "plt.ylabel('N')\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "3c8e786f-cb8b-4b77-97e6-afc9c2dfb227", "metadata": {}, "source": [ "**Answer:**" ] }, { "cell_type": "markdown", "id": "c5ebbd52-83fa-452a-b576-9069e03e578c", "metadata": {}, "source": [ "

\n", "

" ] }, { "cell_type": "markdown", "id": "01abb120-b97b-494a-be2a-3d793561514b", "metadata": {}, "source": [ "**Question 2.2** Note the slight deviation at small magnitudes (~2-3) to fewer than expected detections of small earthquakes. This *kink* is indicative of something called the *magnitude of completeness* of a seismicity catalog, a threshold magnitude below which not all earthquakes may be detected. This bias can be accounted for by excluding earthquakes below the *magnitude of completeness* while estimate the $b$ value (which we will leave to the experts for now!). Why are smaller earthquakes harder to detect? *Hint:* Think signal-to-noise ratio (SNR).\n", "\n", "**Answer:**" ] }, { "cell_type": "markdown", "id": "26fe3d34-5a8f-497e-b884-30b49f42b9fd", "metadata": {}, "source": [ "

\n", "

" ] }, { "cell_type": "markdown", "id": "94769c19-a5a9-441f-9b40-dbaf47f4b143", "metadata": {}, "source": [ "**Question 2.3** Fill the table of joint probabilities of earthquakes happening within a 30-year period for the Los Angeles Area based on the instructions below:" ] }, { "cell_type": "markdown", "id": "aad3be86-93df-4079-a2b6-a8534de8a6a2", "metadata": {}, "source": [ "- First two columns are provided. The values were calculated for you by using the `catalog_filter` function.\n", "- Calculate the average number of earthquakes per year that occurred in each magnitude range.\n", "- Calculate the mean recurrence interval (MRI) for each magnitude range up through magnitude 6.0-6.9. The MRI is defined as the average time between earthquakes. Extrapolate MRI for magnitude 7.0 or above (see hint below).\n", "- Determine the probability of earthquakes of each magnitude range occurring in one year, expressed as either a fractional probability between 0 and 1.0.\n", " - For earthquakes with MRI’s greater than one year: Fractional probability = 1/ MRI and then multiply by 100 to get % probability. (Note that this is equal to the average # of earthquakes per year. But using the 1/ MRI method allows calculation of probabilities for earthquakes that haven’t occurred over the study period - because we have extrapolated MRI’s.)\n", "- Determine the probability of each earthquake magnitude NOT occurring in a year. This will simply be is 1.0 minus the probability of that thing occurring in a year." ] }, { "cell_type": "markdown", "id": "73c7e8fc-8326-4be0-8206-42a1804b40d0", "metadata": {}, "source": [ " \n", "*Hint:* How to extrapolate MRI:\n", "\n", "1. Plot MRI as a function of magnitude to see the relationship. You will find that MRI is an exponential function of magnitude\n", "\n", "2. Fit a straight line $\\log_{10}(\\text{MRI}) = intercept + slope * M$ where $M$ is the magnitude\n", "\n", "3. Use $intercept$ and $slope$ to calculate MRI for magnitude range 7.0-7.9, 8.0-8.9, and 9.0-9.9." ] }, { "cell_type": "code", "execution_count": 4, "id": "cf1582ab-7c78-4639-88b8-10d36312ca81", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_1728417/4143073906.py:8: RuntimeWarning: divide by zero encountered in true_divide\n", " MRI = 30/n\n" ] }, { "data": { "text/plain": [ "array([3.92223515e-04, 1.39723348e-03, 1.63934426e-02, 1.43540670e-01,\n", " 1.15384615e+00, 1.50000000e+01, inf, inf,\n", " inf])" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# the centers of the magnitude ranges\n", "mag = np.array([1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5])\n", "\n", "# number of earthquakes over 30 years\n", "n = np.array([76487,21471,1830,209,26,2,0,0,0])\n", "\n", "# Mean recurrence intervals in years\n", "MRI = 30/n\n", "\n", "# notice that the last 3 elements are inf\n", "MRI" ] }, { "cell_type": "code", "execution_count": 5, "id": "a6492eab-e82d-4adb-9dff-10d40b851584", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAD4CAYAAADlwTGnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAihElEQVR4nO3deXxV5Z3H8c9DNsIawYisBgUiAgISQNC2oWLRupSio0CtuygOVrowFWtHO9MOtky1Oi4VFcENTBEpKm3UTqMoKBDCKgRFIyQBAmhCAtnvb/4gOIgEgrnJOffc7/v18iX3cHLu7yHwfPMs9xxnZoiISPRp4XUBIiLiDQWAiEiUUgCIiEQpBYCISJRSAIiIRKlYrws4lqSkJOvVq5fXZTSZ/fv307p1a6/LaBJBbhuofZEu6O3Lzs7eY2bJxzvP1wHQqVMnVq1a5XUZTSYrK4v09HSvy2gSQW4bqH2RLujtc8591pDzNAUkIhKlFAAiIlFKASAiEqV8GQDOucucc7PKysq8LkVEJLB8GQBm9qqZTWrTpo3XpYiIBJavdwGJiESyRTkFzMzMpbC4nC5JiUwbk8rYwV29LutLCgARkSawKKeA6QvXU15dC0BBcTnTF64H8E0I+HIKSEQk0s3MzP2y8z+kvLqWmZm5HlX0dQoAEZEmUFhcfkLHvaAAEBEJs6J9FcTGuKP+XpekxGaupn4KABGRMNq8cx9jH30PgPiYr3axiXExTBuT6kVZR6UAEBEJk3e27ObKx5dTa8Yrt5/HH648m65JiTiga1IiM8YN8M0CMGgXkIhIWMxbsY17Fm2gT6e2zL4+jc7tE+nftb2vOvwjNVsAOOdOB34FtDezK5vrfUVEmlIoZPwhM5c/v72V9NRkHpl4Dm0SIuNn60ZNATnnZjvnipxzG444fpFzLtc597Fz7i4AM/vEzG5qzPuJiPhJRXUtU+at5s9vb+Wac3vw1LVpEdP5Q+PXAOYAFx1+wDkXAzwKXAycBUxwzp3VyPcREfGVPWWVTHjyff62YSf3XNKX//xBf2JjImtZ1ZlZ4y7gXArwmpn1r3s9ArjPzMbUvZ4OYGYz6l4vONYUkHNuEjAJIDk5eUhGRkaj6vOzsrIygnq/oyC3DdS+SNfY9hWWhXgwu4KSSuPWgQkM6eSvn/pHjRqVbWZpxzuvKaruCmw/7HU+MNw51xH4HTDYOTf9UCAcycxmAbMAUlNTLchP7QnyU4mC3DZQ+yJdY9q3bOse7n8um/jYODImD2VQ96Sw1tacmiIAjvbpBzOzvcBtDbqAc5cBl3Xp0iWshYmINMaC7HymL1xHSsfWzL5+KN07tPK6pEZpigmrfKD7Ya+7AYUncgHdDlpE/MTMeODNLfziL2sZ1rMDCyaPjPjOH5pmBLAS6O2c6wkUAOOBiSdyAY0ARMQvKmtq+eWCdSxaU8hVad343Q8HEBdhi731aew20HnAciDVOZfvnLvJzGqAKUAmsAnIMLONJ3JdjQBExA++2F/Fj59awaI1hUwbk8rvrzg7MJ0/NHIEYGYT6jm+BFjSmGuLiHgpb89+bpizkoLich6eMJjLBwZvRsJfe5fqaApIRLy0Ku9zbnl2FQAv3jyctJQOHlfUNHw5ltEUkIh4ZfHaQiY++QEntYrnldvPC2znDxoBiIgAB3f6PJa1lZmZuQxL6cATPx7CSa3jvS6rSWkEICJRr7o2xC9fXsfMzFzGDurCczcPC3znDz4dAYiINJeS8mpufyGb9z7ey50X9Gbq6N44d/SneQWNAkBEotb2zw9ww5yVfLZ3P3/8l4FcMaSb1yU1K18GgNYARKSprdlezM1zV1JVE+LZG4cz4oyOXpfU7LQGICJRZ9XOGsbPWk5ifAwLbz8vKjt/8OkIQESkKZgZTy39lEfXVDKoRxJPXZtGxzYJXpflGQWAiESFmtoQ9y7eyAsfbGPoqTE8d8u5tIyL8bosT/kyALQGICLhVFZZw5QXV5OVu5vJ6WcwNGFH1Hf+oDUAEQm4HSXlXPn4MpZ+tIcZ4wbwy4vOpEWUbPM8Hl+OAEREwmFDQQk3zV3Jgcpa5twwlG/1Tva6JF9RAIhIIP1j0y7umJdDUmIcCyaPJPXUtl6X5DsKABEJnLnL8vjNqxvp16U9T1+XxintWnpdki/5MgC0CCwi30RtyPjt6x/yzHt5XHhWJx4aP4hW8b7s5nxBi8AiEggHqmq49blsnnkvjxvP68mfrxmizv849KcjIhGvaF8FN81dxcbCEn5zeT+uG5nidUkRQQEgIhFt88593PjMSorLq3nqujS+e2Ynr0uKGAoAEYlY72zZze0vrKZ1QgwZt46gf9f2XpcUURQAIhKR5q3Yxj2LNtD7lDY8c8NQOrdP9LqkiKMAEJGIEgoZf8jM5c9vbyU9NZlHJp5DmwR1Zd+E/tREJGJUVNfys4w1LFm/k2vO7cF9l/UjNsaXmxkjgi8DQJ8DEJEj7Smr5JZnV7FmezH3XNKXm87vGTWPbmwqvoxOfQ5ARA73cVEZP3zsPTbt2MfjPxrCzd86XZ1/GPhyBCAicsjyrXu59blVxMe2YP6kEQzqnuR1SYGhABAR31qQnc/0hetI6dia2dcPpXuHVl6XFCgKABHxHTPjwbc+4uF/fMR5vTry2I+G0D4xzuuyAkcBICK+UllTyy8XrGPRmkKuSuvGb8cOID7Wl8uVEU8BICK+8cX+Km59LpsVeZ8zbUwqt6efocXeJqQAEBHPLMopYGZmLoXF5ZzSLoHakLGvooaHJwzm8oHaBt7UFAAi4olFOQVMX7ie8upaAHbtqwTgJxf0UuffTDSxJiKemJmZ+2Xnf7iXsws8qCY6NdsIwDnXGngMqAKyzOyF5npvEfGfwuLyEzou4deoEYBzbrZzrsg5t+GI4xc553Kdcx875+6qOzwOWGBmtwCXN+Z9RSSyffDJXlrUs7jbJUl39WwujZ0CmgNcdPgB51wM8ChwMXAWMME5dxbQDdhed9rXx30iEniVNbXM+Nsmxj/5PkmtYkk4YntnYlwM08akelRd9HFm1rgLOJcCvGZm/etejwDuM7Mxda+n152aD3xhZq855+ab2fh6rjcJmASQnJw8JCMjo1H1+VlZWRlBvd9RkNsGat83UVAa4s/rKtleGuI73WKZcGY8q4tqeHlLNXsrjI4tHVf0iWNkl6b/wFfQv3+jRo3KNrO0453XFGsAXfn/n/ThYMc/HHgYeMQ5dwnwan1fbGazgFkAqamplp6e3gQl+kNWVhZBbV+Q2wZq34kIhYw5y/K4/4PNtE2I5clrz+bCsw4+tvEi4O6wvMuJCfr3r6GaIgCONrFnZrYfuKFBF9DtoEUCYWdJBdMWrGXpR3u44MxTuP+Ks0lum+B1WVKnKQIgH+h+2OtuQOGJXMDMXgVeTU1NvSWchYlI83ltXSG/emUDVTUh/uuHA5gwrLs+1eszTREAK4HezrmeQAEwHph4IhfQCEAkcu2rqObev27klZwCBnVP4sGrB9Hz5NZelyVH0dhtoPOA5UCqcy7fOXeTmdUAU4BMYBOQYWYbT+S6eiCMSGT64JO9XPynpSxeW8jU0b1ZcNsIdf4+1qgRgJlNqOf4EmBJY64tIpGjsqaWB97cwqx3PuG0Dq1YcNsIBvc4yeuy5Dh8eS8gTQGJRI4tu0q5c/4aNu3Yx4RhPbjnkr60TvBl1yJH8OV3SYvAIv4XChnPLMvj938/uL3zqWvTGF23vVMigy8DQET8bUdJOb/4y1re+3gvo/se3N55chtt74w0vgwATQGJ+Nfh2ztnjBvA+KHa3hmpfBkAmgIS8R9t7wweXwaAiPjL+5/s5ecZa9m5r4Kpo3szZVQvYmP0OJFI58sA0BSQiD9U1tTywBtbmLX0E1I6ttb2zoDxZQBoCkjEe7k7S5n60sHtnROHH9ze2Srel12GfEP6borIV4RCRmZeNS+/9S7tWsby9HVpXNBX2zuDSAEgIl/6/+2dVdreGQV8GQBaAxBpfq+uLeRXr6ynJmRc3y+ee69J0/bOgPPlMr5uBifSfErKq5k6P4c75uVwenIblvzkW6R3j1PnHwV8OQIQkeaxfOtefp6xhl2llfx0dB/+ddQZxMa0IM/rwqRZKABEolBlTS1/fGMLT9Zt73x58kgGdU/yuixpZgoAkSizeec+ps5fw+adpfxoeA9+pe2dUUvfdZEoEQoZs9/7lD/8PZd2ibHMvj6N756p7Z3RzJcBoF1AIuFVWHxwe+eyrXu58KxO3D9uAB21vTPq+TIA9ElgkfBZvLaQe+q2d/7+igFclaa7d8pBvgwAEWm8kvJq/v2vG/jrmkIG90jiwasGkaK7d8phFAAiAbRs6x5+kbGWXaWV/OzCPtyefobu3ilfowAQCZDDt3f27NiahZNHMlDbO6UeCgCRgDh8e+c15/bg7u9re6ccm/52iES4r27vjOOZ64cy6sxTvC5LIoAvA0DbQEUaRts7pTF8GQDaBipyfH9dU8CvF23Q9k75xnwZACJSv5Lyan69aAOL1xZyTo+DD2c/raO2d8qJUwCI+NiinAJmZuZSWFxOl6REfjC4C4tWF1BUWsnPL+zDZG3vlEZQAIj41KKcAqYvXE95dS0ABcXlPPbPrSS3iedlbe+UMNCPDiI+NTMz98vO/3CxMS3U+UtYKABEfKqwuPyox3eWVDRzJRJUCgARHyo+UEVC7NH/eXZJSmzmaiSoFAAiPvPBJ3u5+KGlVNWGiIv56rbOxLgYpo1J9agyCRoFgIhP1NSGePDNLUx48n1axsWweMr5zLxyIF2TEnFA16REZowbwNjBXb0uVQKi2XYBOedOB34FtDezK5vrfUUiQWFxOVPnr2FF3udccU43fvODfrRJiKV/1/bq8KXJNGgE4Jyb7Zwrcs5tOOL4Rc65XOfcx865u451DTP7xMxuakyxIkH09w07ufihpWwsLOFPVw/ij1cNpE2CdmhL02vo37I5wCPAs4cOOOdigEeBC4F8YKVzbjEQA8w44utvNLOiRlcrEiAV1bX89vUPef79bZzdrT0Pjx+sB7ZIs3Jm1rATnUsBXjOz/nWvRwD3mdmYutfTAczsyM7/yOssONYUkHNuEjAJIDk5eUhGRkaD6otEZWVltGnTxusymkSQ2waNb19BaYjH11aQX2Zc3DOOK3rHEdvCP/fx0fcvso0aNSrbzNKOd15jxpldge2Hvc4Hhtd3snOuI/A7YLBzbnp9QWFms4BZAKmpqZaent6IEv0tKyuLoLYvyG2Db94+M+PFFdv4j7c+pG3LOObeOIjv9EkOf4GNpO9fdGhMABztx5V6hxNmthe4rUEX1u2gJYBKDlRz18J1/G3DTr7V+2QeuGoQyW1162bxTmMCIB/oftjrbkBh48o5SLeDlqBZmfc5d87Loai0kru/fyY3n386LXw05SPRqTEBsBLo7ZzrCRQA44GJ4ShKIwAJitqQ8eg/P+ZPb22he4dWuomb+EpDt4HOA5YDqc65fOfcTWZWA0wBMoFNQIaZbQxHUWb2qplNCvIijQTfjpJyJj75Pg+8uYXLB3bhtTvOV+cvvtKgEYCZTajn+BJgSVgrEgmANz/cxbQFa6mqCfHHfxnIuHO66mld4ju+/LSJpoAkUlVU1zJjySbmLv+Mfl3a8T8TBnN6skay4k++DAAtAksk+riolCkv5rB5Zyk3n9+TaRelkhAb43VZIvXyZQCIRBIzI2PVdu5b/CGt4mN45vqhjDrzFK/LEjkuXwaApoAkUpSUV3P3K+t5fd0OzuvVkQevGsQp7Vp6XZZIg/gyADQFJJEg+7MvuHN+DjtLKvjlRWdy67e1t18iiy8DQMTPakPGq1urWPTGcjq3b0nGbSM4p8dJXpclcsJ8GQCaAhK/2rWvgp++tIZlW6u59OzO/Ne4AbRrGed1WSLfiC+fCKYPgokf/e/mXVz80FJythVzY/94/mfCYHX+EtF8OQIQ8ZPKmlru/9tmnnkvj76dD+7tz/9wlT7YJRFPASByDFt3l3HHizl8uGMf149M4a6Lz6RlXAz5H3pdmUjj+TIAtAYgXjMzFmTnc+/ijSTEtuCpa9MYfVYnr8sSCStfBoC2gYqXSiuq+dUrG1i8tpBzT+/An64ezKnttbdfgseXASDilTXbi7lj3moKiyv4xff6MDm9FzHa2y8BpQAQAUIhY9bST/jvzFw6tWtJxq3nMuS0Dl6XJdKkFAAS9YpKK/jZS2t59+M9fH/AqcwYdzbtE7W9U4JPASBRLSu3iJ9nrGV/VQ0zxg1g/NDu2t4pUcOXAaBdQNLUqmpCzMzczJNLP+XMU9syf8K59O7U1uuyRJqVLwNAu4CkKX26Zz8/mZfD+oISrh1xGnd/vy8t43Tffok+vgwAkaaycHU+v160gdiYFjzx4yGM6Xeq1yWJeEYBIFGhrLKGXy/awCs5BQzr2YE/XT2ILkmJXpcl4ikFgATeuvxifjIvh22fH+Cno/sw5bva2y8CCgAJsFDIePrdT/lD5maS2yQwf9IIhvXU3n6RQxQAEki7Syv5xV/W8vaW3Yzp14nfX3E2Sa3ivS5LxFd8GQDaBiqN8c6W3fwsYy2lFdX8dmx/fjS8h/b2ixyFLwNA20CloRblFDAzM5fC4nI6t2/JmZ3b8r+bd9P7lDa8cPNwUk/V3n6R+vgyAEQaYlFOAdMXrqe8uhaAwpIKCksqGHFGB2ZfN4zEeO3tFzkWXz4SUqQhZmbmftn5H27b3nJ1/iINoACQiFVYXH5Cx0XkqxQAEpHKq2ppGXf0v776gJdIwygAJOLsKCnnqieWU14dIvaID3QlxsUwbUyqR5WJRBYtAktEydn2BZOey+ZAZQ1PX5dGaUXNl7uAuiQlMm1MKmMHd/W6TJGIoACQiPFKTj6/fHk9p7ZryQs3D6dP3e2b1eGLfDMKAPG9UMiY+UYuj2dtZXjPDjx+zRA6tNanekUaq9kCwDk3FrgEOAV41MzeaK73lshVVlnD1Pk5vLWpiInDe3DfZf2Ij9XSlUg4NOhfknNutnOuyDm34YjjFznncp1zHzvn7jrWNcxskZndAlwPXP2NK5aosf3zA1zx2DL+mbub//hBP343tr86f5EwaugIYA7wCPDsoQPOuRjgUeBCIB9Y6ZxbDMQAM474+hvNrKju1/fUfZ1Ivd7/ZC+Tn8+mNmTMvWEY5/c+2euSRALHmVnDTnQuBXjNzPrXvR4B3GdmY+peTwcwsyM7/0Nf74D7gTfN7K1jvM8kYBJAcnLykIyMjAY3JtKUlZXRpk0br8toEo1pW9b2ap77sIrkVo6p57Tk1Nb++6k/yN87UPsi3ahRo7LNLO145zVmDaArsP2w1/nA8GOcfwcwGmjvnOtlZn8+2klmNguYBZCammrp6emNKNHfsrKyCGr7vknbampD/Pb1TczZmMd3+iTz8ITBtE+Ma5oCGynI3ztQ+6JFYwLgaPfXrXc4YWYPAw836MK6HXTUKTlQzZR5q1n60R5uPr8n07/fV0/tEmlijRlb5wPdD3vdDShsXDkHmdmrZjYpyEM0+X9bd5cx9rH3eP+TvfzhirO559Kz1PmLNIPGjABWAr2dcz2BAmA8MDEcRWkEED3e3rKbKS+uJj6mBS/eci5DU/TIRpHm0tBtoPOA5UCqcy7fOXeTmdUAU4BMYBOQYWYbw1GURgDBZ2bMfvdTbnhmBV2TEvnrlPPU+Ys0swaNAMxsQj3HlwBLwlqRBF5VTYhfL9rAS6u2872zOvHg1YNonaAPpYs0N1/+q9MUUHDtLatk8vOrWZH3OXd8txc/Hd2HFprvF/GE/zZYoymgoNq0Yx+XP/Iea/OLeWj8IH7+vVR1/iIe8uUIQILnjY07mfrSGtq2jCXj1hEM7J7kdUkiUc+XAaApoOAwMx7L2srMzFwGdmvPrGvT6NSupddliQiaApImVFFdy9SX1jAzM5fLB3bhpVtHqPMX8RFfjgAk8n1REeLqJ5azNr+EaWNSuT39DA7eDkpE/MKXAaApoMi2dnsxv1leQZVVMevHQ/hev1O9LklEjkJTQBJWf11TwFVPLCfGwcuTR6rzF/ExX44AJPKEQsYDb27hkX9+zLCUDlxzegV9O7fzuiwROQZfjgAksuyvrOG257N55J8fc3Vad56/eTjt4jXfL+J3vhwBaA0gcuR/cYCb565iy65S/v3Ss7jhvBQt9opECF+OALQGEBlW5n3ODx55j4Licp65YRg3nt9Tnb9IBPHlCED876WV27hn0Qa6ndSKp65L44xkhbVIpFEAyAmpqQ0x42+befrdTzm/18k8OvEc2rfy52MbReTYFADSYCXl1dwxL4d3tuzm+pEp3HNJX2JjfDmLKCINoACQBvl0z35umruSbXsP8F8/HMDE4T28LklEGsmXAaBdQP7y7kd7uP2FbGJaOJ6/eTjnnt7R65JEJAx8OX7XLiB/MDPmLsvjumdWcGr7liyecr46f5EA8eUIQLxXVRPi3sUbmbdiG6P7nsKDVw+ibUst9ooEiQJAvubz/VVMfj6bDz79nMnpZ/CL76USoyd3iQSOAkC+YsuuUm6au5Jd+yp58OqB/HBwN69LEpEmogCQL7314S7unJ9Dq4RYXpp0LoN7nOR1SSLShBQAgpnxxDuf8Pu/b6Zfl3Y8eW0andsnel2WiDQxXwaAtoE2n4rqWu5euJ6FOQVccnZn/vvKgSTGx3hdlog0A20DjWJF+yoYP+t9FuYU8LML+/DIhMHq/EWiiC9HANL0NhSUcMuzqyg+UM3jPzqHiwd09rokEWlmCoAo9Pq6Hfz8L2vo0CqeBZNH0K9Le69LEhEPKACiwKKcAmZm5lJYXE6blrGUVtRwTo8knvhxGsltE7wuT0Q8ogAIuEU5BUxfuJ7y6loASitqiHGOicN6qPMXiXK+XASW8JmZufnLzv+QWjMefOsjjyoSEb/QCCCgyiprWLg6n4LiiqP+fmFxeTNXJCJ+owAImE/37Gfusjxezs6ntLKGuBhHda197bwuSfqgl0i0UwAEQChkvP3RbuYuyyMrdzdxMY7vD+jM9SNT+Gzvga+sAQAkxsUwbUyqhxWLiB80WwA45/oCdwInA/8ws8eb672Dal9FNQtW5fPc+5/x6Z79JLdNYOro3kwc3oNT2rYE+PJ+Pod2AXVJSmTamFTGDu7qZeki4gMNCgDn3GzgUqDIzPofdvwi4CEgBnjKzO6v7xpmtgm4zTnXAniyUVVHuY+Lynh2+cFpnv1VtQzukcRD4wdxcf/OxMd+fV1/7OCu6vBF5GsaOgKYAzwCPHvogHMuBngUuBDIB1Y65xZzMAxmHPH1N5pZkXPucuCuumvJCagNGVm5RcxZlsfSj/YQH9OCSwcenOY5u1uS1+WJSARyZl9fIDzqic6lAK8dGgE450YA95nZmLrX0wHM7MjO/2jXet3MLqnn9yYBkwCSk5OHZGRkNKi+SFRWVsbx7ne0v9pYml/DP7ZVs7vcSEpwfLdHLOnd4miX4N+HtDSkbZFM7YtsQW/fqFGjss0s7XjnNWYNoCuw/bDX+cDw+k52zqUD44AEYEl955nZLGAWQGpqqqWnpzeiRH/LysqivvZt2VXKnGV5vLK6gPLqWoamnMS9I1MY0+9U4mL8//GNY7UtCNS+yBb09jVUYwLgaD9+1jucMLMsIKtBF47S20HXhoy3Nu1i7rI8lm3dS3xsC8YO6sK1I1Lo31X36xGR8GpMAOQD3Q973Q0obFw5B5nZq8Crqampt4Tjen5XfKCK+Su389zyzygoLqdL+5b820WpjB/agw6t470uT0QCqjEBsBLo7ZzrCRQA44GJYakqSmwvDXHXy+t4JaeAypoQ557egV9f2pfRfTsRGwHTPCIS2Rq6DXQekA6c7JzLB+41s6edc1OATA7u/JltZhvDUVSQp4BqakO88eEu5izLY8Wn5bSMK2DcOV25dkQKfTu387o8EYkiDQoAM5tQz/ElHGNB95sK4hTQ3rJK5q/czvPvf8aOkgq6nZTI1anxTL/6OyS10jSPiDQ/X94KIkgjgA0FJcxZlsfitYVU1YQ4r1dHfnN5Py7o24ml77ytzl9EPOPLAIj0EUB1bYi/b9jJnGV5ZH/2Ba3iY7gqrRvXjUihd6e2XpcnIgL4NAAi1e7SSuat2MYLH3zGrn2VnNaxFfdc0pd/SetO+8Q4r8sTEfkKXwZApE0BrdlezNxleby+bgdVtSG+3SeZGeNOI73PKbRo4d9P64pIdPNlAETCFFBVTYgl63fwzLI81m4vpnV8DBOGdefakSmckRzcj5iLSHD4MgD8rGhfBc9/sI0XP9jGnrJKTj+5NfdddhZXDOlG25aa5hGRyOHLAPDbFJCZsXrbwWmeJet3UBMyRqUmc93IFL7dO1nTPCISkXwZAH6ZAqqoruW1dTuYuyyP9QUltE2I5doRKVw74jRSTm7tZWkiIo3mywBobotyCr7yxKxbvt2TPaVVzFuxjb37q+h1Shv+c2x/xg3uSusE/ZGJSDBEfW+2KKfgK8/MLSgu577FHwIwum8nrh+Zwnm9OuKcpnlEJFiiPgBmZuZ+5YHph3Rql8BT1x33eQoiIhHLl7ecdM5d5pybVVZW1uTvVVhcftTjRfsqm/y9RUS85MsAMLNXzWxSczyyrUtS4gkdFxEJCl8GQHOaNiaVxLiYrxxLjIth2phUjyoSEWkeUb8GMHZwV4Cv7AKaNib1y+MiIkEV9QEAB0NAHb6IRBtfTgE15yKwiEi08mUANOcisIhItPJlAIiISNNTAIiIRCkFgIhIlHJm5nUN9XLOlQK5XtfRhE4G9nhdRBMJcttA7Yt0QW9fqpkd9wHkft8Gmmtmgb0hj3NuVVDbF+S2gdoX6aKhfQ05T1NAIiJRSgEgIhKl/B4As7wuoIkFuX1BbhuofZFO7cPni8AiItJ0/D4CEBGRJqIAEBGJUr4MAOfcbOdckXNug9e1hJtzrrtz7p/OuU3OuY3OuTu9rimcnHMtnXMrnHNr69r3G69rCjfnXIxzLsc595rXtTQF51yec269c25NQ7cTRgrnXJJzboFzbnPdv8ERXtcULs651Lrv2aH/9jnnph7za/y4BuCc+zZQBjxrZv29riecnHOdgc5mtto51xbIBsaa2YcelxYWzjkHtDazMudcHPAucKeZve9xaWHjnPsZkAa0M7NLva4n3JxzeUCamQXug1LOubnAUjN7yjkXD7Qys2KPywo751wMUAAMN7PP6jvPlyMAM3sH+NzrOpqCme0ws9V1vy4FNgGBeRiBHXToPt5xdf/576eMb8g51w24BHjK61rkxDjn2gHfBp4GMLOqIHb+dS4Ath6r8wefBkC0cM6lAIOBDzwuJazqpkjWAEXAm2YWpPb9Cfg3IORxHU3JgDecc9nOuUleFxNGpwO7gWfqpvCecs619rqoJjIemHe8kxQAHnHOtQFeBqaa2T6v6wknM6s1s0FAN2CYcy4Q03jOuUuBIjPL9rqWJnaemZ0DXAz8a92UbBDEAucAj5vZYGA/cJe3JYVf3dTW5cBfjneuAsADdXPjLwMvmNlCr+tpKnXD6yzgIm8rCZvzgMvr5sjnA991zj3vbUnhZ2aFdf8vAl4BhnlbUdjkA/mHjUgXcDAQguZiYLWZ7TreiQqAZla3SPo0sMnMHvC6nnBzziU755Lqfp0IjAY2e1pUmJjZdDPrZmYpHBxi/6+ZXeNxWWHlnGtdtzmBuumR7wGB2I1nZjuB7c651LpDFwCB2HxxhAk0YPoHfHo3UOfcPCAdONk5lw/ca2ZPe1tV2JwH/BhYXzdPDnC3mS3xrqSw6gzMrduF0ALIMLNAbpcMqE7AKwd/TiEWeNHM/u5tSWF1B/BC3TTJJ8ANHtcTVs65VsCFwK0NOt+P20BFRKTpaQpIRCRKKQBERKKUAkBEJEopAEREopQCQEQkSikARESilAJARCRK/R/NjVDn8BgVdQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "MRI_valid = MRI[MRI < np.inf]\n", "mag_valid = mag[MRI < np.inf]\n", "\n", "plt.semilogy(mag_valid, MRI_valid, '-o')\n", "plt.xlim(1,7)\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 6, "id": "e86ab204-d48f-45b8-95ed-c2b86eaf0622", "metadata": {}, "outputs": [], "source": [ "# fit log10(MRI) = a + b * magnitude\n", "MRI_log = np.log10(MRI_valid)\n", "\n", "p = np.polyfit(mag_valid, MRI_log, 1)\n", "intercept = p[1]\n", "slope = p[0]\n", "MRI_fit = 10 ** (intercept + slope * mag)" ] }, { "cell_type": "code", "execution_count": 7, "id": "f536f99e-5832-4f8c-9efd-4105fd6c8ef5", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEGCAYAAACkQqisAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA3wElEQVR4nO3deVxVdf7H8ddHdtTABU3BXNLQctfKpQUy03LJzEpz+mWbNU3bzGSpLZbNTE06LWbLmJo2lUUupKZZWqillZrmTi5pgpYrKAKyfX5/3KshgVwQOJfL5/l4+JBz7rnnvEHg4/f7Pef7FVXFGGOMKY1qTgcwxhhTeVkRMcYYU2pWRIwxxpSaFRFjjDGlZkXEGGNMqfk7HaA8hIeHa/PmzZ2OcZrjx49TvXp1p2OcxjJ5zhtzWSbPWCbPrVmz5qCqRpToTarqc38uuOAC9TZfffWV0xH+wDJ5zhtzWSbPWCbPAau1hL9vrTvLGGNMqVWKIiIi1UVkjYj0dTqLMcaY3zlSRERkqojsF5GNBfb3FpFEEdkuIiPzvfQ4EFexKY0xxhTHqYH1acBE4N2TO0TED3gd6AkkAatEZC7QENgMBJ/NBbOzs0lKSiIzM/NsTlNqYWFhbNmyxZFrF8XbMgUHByMiTscwxpSAqENzZ4lIE2C+qrZ2b3cFnlHVXu7tUe5DawDVgQuBDOAGVc0r5HzDgeEAERERneLiTm+41KhRg/r16xMWFubIL6rc3Fz8/Pwq/Lpn4k2ZVJXU1FSSk5MdK/RnkpaWRo0aNZyOcRrL5BnL5LnY2Ng1qtq5JO/xplt8I4E9+baTgEtV9QEAERkGHCysgACo6iQR2Qf0CwgI6BQTE3Pa61u2bCEqKsqx/+keO3aMmjVrOnLtonhbppo1a3Lw4EG6dOnidJQ/SEhIoOD3lNMsk2d8NVP82mTGLUpkb0oGDcNDGNErmgEdIssmYAl408B6Yb/dTzWTVHWaqs4/0wlUdZ6qDi+qwltXiXezfx9jPBO/NplRszeQnJKBAskpGYyavYH4tckVnsWbikgS0CjfdhSwtyQnEJF+IjIpLS2tTIMZY4w3GbcokYzs3NP2ZWTnMm5RYoVn8aYisgpoISJNRSQQGAzMdThTmZowYQKtWrVi6NChzJ07lxdeeAGA+Ph4Nm/efOq4adOmsXdvieonu3btonXr1qXO1qRJEw4ePAjgUV/tM888w/jx4894TMHPyxhTNvamZJRof3ly6hbfGcBKIFpEkkTkLlXNAR4AFgFbgDhV3VSS8xbXnVUS8WuT6f7ClzQd+SndX/iyTJqJb7zxBgsWLOD999+nf//+jBzpuou5LIqIN7IiYkzZW7hhH0X1/DYMD6nYMDg0sK6qQ4rYvwBYUNrzikg/oF/Dhg1Lewrg9/7Gk83Fk/2NQKkHrh555BF27txJ//79ufPOO6lVqxarV6/m1ltvZe7cuSxdupR//OMfDBkyhNWrVzN06FBCQkJYuXIlmzdv5m9/+xtpaWnUrVuXadOm0aBBA9asWcOdd95JaGgol112mUc5BgwYwJ49e8jMzOTee+/loYce8vhz+Oc//8m7775Lo0aNiIiIoFOnTgC8/fbbTJo0iaysLJo3b87//vc/1q1bd9rnNWvWLL788ss/HBcaGlqqr6cxVc2htBM8PXcTn67fR1R4MAfSsjiR8/t9RiEBfozoFV3hubzp7qyzpqrzgHnR0dH3nOm4Z+dtYvPeo0W+vvaXFLJyT78JLCM7l8dmrmfG978U+p4LG57DmH4XFXnOV155hSVLlvDVV1+dKgQA3bp1o3///vTt25dBgwYBsHDhQsaPH0/nzp3Jzs7mwQcf5JNPPiEiIoKPPvqIJ554gqlTp3LHHXfw2muvceWVVzJixIgzfcqnTJ06ldq1a5ORkUGnTp0YOnQoderUKfZ9a9as4cMPP2Tt2rXk5OTQsWPHU0Vk4MCB3HOP60v+5JNPMmXKFB588ME/fF7h4eGFHmeMObNP1+/jqU82ciwzmxG9ohl+RTM+Xb/PK+7O8qkiUlYtkYIFpLj95SkxMZGNGzfSs2dPwPVsR4MGDUhNTSUlJYUrr7wSgNtuu42FCxcWe74JEyYwZ84cAJKTk9m2bZtHRWT58uXccMMNp1oO/fv3P/Xaxo0befLJJ0lJSSEtLY1evXoVeg5PjzPGuBxMO8HTn2xkwYZfaRsVxrhBXYg+13Vb/oAOkY4UjYJ8qoh42hI5U4sBoPsLX5JcyABVZHgIH93b9awylpSqctFFF7Fy5crT9qekpJT4ltiEhAQWL17MypUrCQ0N5fLLLy/Rg31FXW/YsGHEx8fTrl07pk2bRkJCwlkdZ0xVp6rMX7+Ppz/ZyPETuTzWO5rhlzfD38+b7oVy8b5EXmBEr2hCAk5/krs8+xtr1qzJsWPHCt2Ojo7mwIEDp4pIdnY2mzZtIjw8nLCwML7++msA3n///VPvT05OpkePHn+4TmpqKrVq1SI0NJStW7eyatUqjzNeccUVzJkzh4yMDI4dO8a8efNOvXbs2DEaNGhAdnb2aTkKfl5FHWeM+d2BYyf483s/8OCMtZxXpzqfPnQZ98c098oCAj5WRMrqOZEBHSJ5fmAbIsNDEFwtkOcHtim3puPgwYMZN24cHTp0YMeOHQwbNoz77ruP9u3bk5uby8yZM3n88cdp164d7du3Z8WKFQC88847/OUvf6Fr166EhPx+V8a+ffvw9/9jI7N3797k5OTQtm1bnnrqKS6++GKPM3bs2JFbbrmF9u3bc+ONN3L55Zefeu25557j0ksvpWfPnrRs2bLIz6uo44wxrtbHJ+uSueblpXyZuJ+R17Zk1n1daVHfe2aVKFRJFyCpDH8KW5Rq8+bNRa/EUgGOHj1aYdd67bXX9JNPPin2uIrM5KkffvjB6QiF8sZFhCyTZypDpt+OZug901dp48fn6/UTv9Ztvznzs0kpFqXyqTER4/LAAw84HcEY4wFV5ZN1e3lm3ibSs3IZfV1L7rqsGX7VKs8UQD5VRMrq7ixjjClv+49mMnrORhZv+Y2O54Xz4qB2NK/nfTP7Fsenioh6eHeWMcY4RVVZsTeHh5cuIzM7lyf7tOKO7k0rVesjP58qIsYY481+O5rJE3M2sHjLCTo1rsW4QW1pFlH5Wh/5WRExxphypqrM/iGZZ+dt4kROHkNaBvKP/+taaVsf+VkRMcaYcvRraiaj52zgy637ubhJLV4c1I7dG1f5RAEBe07E61x33XWkpKSc8Zinn36axYsXl+r8CQkJ9O3bt1TvNcZ4TlX5ePUeer68lBU7DvJ03wv5aHhXmtat7nS0MuVTLZEyHVhfHwdLxkJqEoRFQY+noe3NZx+yCCfvuV6woPhJjMeOHVtuOYwxZ29fqmvm74TEA1zSpDYvDmpLEx8rHif5VEukzKyPg3kPQeoeQF1/z3vItf8svPTSS7Ru3ZrWrVvzyiuvsGvXLlq1asX9999Px44d2bNnz2mLQz333HO0bNmSnj17MmTIkFOLQA0bNoyZM2cCrsWkxowZQ8eOHWnTpg1bt24F4Pvvv6dbt2506NCBbt26kZhY8SueGVPVqCpxq/ZwzUvL+G7nYZ7pdyEfDu/iswUEfKwl4rGFI+HXDUW/nrQKck+cvi87Az55ANZML/w957aBa18o8pRr167lnXfe4bvvvkNVufTSS7nyyitJTEzknXfe4Y033jjt+NWrVzNr1qxCp14vqG7duvzwww+88cYbjB8/nsmTJ9OyZUuWLVuGv78/ixcvZvTo0cyaNavoz9kYc1b2pmQwcvYGlv10gEubulofjev4bvE4qWoWkeIULCDF7ffAypUrueGGG6he3fVNNXDgQJYvX07jxo3p0qXLH47/+uuvuf7660/NidWvX78izz1w4EAAOnXqxOzZswHXZIu3334727ZtQ0TIzs4udXZjTNFUlY9W7eEfn24hT5Wx11/Eny5tTDUfGTgvjtcXERFpBTwM1AWWqOqbZ33SM7QYAHi5tbsrq4CwRnDHp6W6pGtamj86WVQ8Pb4wQUFBAPj5+ZGTkwPAU089RWxsLHPmzGHXrl3ExMSULLAxpljJKRmMnLWe5dsO0qVZbV68sR3n1alaq3U6tcb6VBHZLyIbC+zvLSKJIrJdREYCqOoWVb0PuBnoXCEBezwNAQXWKg4Ice0vpe7duxMfH096ejrHjx9nzpw5p82EW9Bll13GvHnzyMzMJC0tjU8/LVnxSk1NJTLSNevwyVUUjTFlQ1X54Ltf6PXyMtbsPsJzA1rzwd1dqlwBAedaItOAicC7J3eIiB/wOtATSAJWichcVd0sIv2Bke73lL+Td2GV4d1Z7du3Z9iwYVxyySUA3H333dSqVavI4y+++GL69+9Pu3btaNy4MZ07dyYsLMzj6z322GPcfvvtvPTSS1x11VWlzm2Mgfi1yaeWoq13ThBhwQH8tD+NbufX4d83tqVR7apXPE6SknSblOmFRZoA81W1tXu7K/CMqvZyb48CUNXn873nU1XtU8T5hgPDASIiIjrFxZ1+J1VYWBjNmzcvh8/EM7m5ufj5+RV/YD5paWnUqFGD9PR0rr32Wl599VXat2/vaKbytm3bNo4ePep0jD84+W/hTSyTZ84204q92UzbmEVWgdWxL2/ox51tgkq8wmhZZCovsbGxa1S1RD0+3jQmEgnkH4hIAi4VkRhgIBAEFPkQhapOEpF9QL+AgIBOBccAtmzZQs2azi3ucuzYsRJf/95772Xz5s1kZmZy++23n7H7q6IylTcR8crxm4SEBK/LZZk8c7aZnnjhyz8UEICd6YHExsY6ksmbeFMRKaycq6omAAkVG8U7fPDBB05HMKZKy8tTklMyCn1tbxH7qxpvetgwCWiUbzsK2FuSE6jqPFUdXlQz0amuO+MZ+/cx3mTP4XSGTv6uyNcbhocU+VpV4k1FZBXQQkSaikggMBiYW5ITnGnurODgYA4dOmS/qLyUqnLo0CFyc3OdjmKquLw85d2Vu+j1yjI2Jqdyy8VRhASc/qsyJMCPEb2iHUroXRzpzhKRGUAMUFdEkoAxqjpFRB4AFgF+wFRV3VSS855p7qyoqCiSkpI4cODA2X8CpZCZmUlwcLAj1y6Kt2UKDg7m+PHjTscwVdjuQ8d5bOZ6vvv5MFdcEMELA9vQMDyErs3qnro7q2F4CCN6RTOgQ6TTcb2CI0VEVYcUsX8BZxg8L86ZlscNCAigadOmpT31WUtISKBDhw6OXb8w3php9+7dTkcwVdDJ1se/P0vEv5rw4o1tualz1Kk7rwZ0iLSiUQRvGlg/a7Y8rjGmpHYddLU+vt91mJjoCJ4f2IYGYTbe4SmfKiJnaokYY0x+eXnKtBW7eHHRVgL8qjFuUFsGdYoq1XMfVZlPFRFriRhjPPHzweM8NvNHVu06wlUt6/GvG9pwbpj3jA9WJj5VRKwlYow5k9w85Z1vfmbcokSC/Kvxn5vaMbBjpLU+zoJPFRFriRhjirLjQBqPzVzPmt1H6NGyHv8a2Ib651jr42z5VBExxpiC8lR5e9lOxn+eSHCAHy/f0o4B7a31UVasiBhjfNb2/Wn889tMdqRu4epW9fnXDa2pZ62PMuVTRcTGRIwx4Br7mLx8J//54icCJI9XB7enf7uG1vooBz5VRGxMxBizff8xHv14Pev2pHDNhfW5rv5Rrm9vDwqWF58qIsaYqisnN4+3l//My4t/onqgHxOGdKBf2wYsXbrU6Wg+zYqIMabS2/bbMR79+Ed+TEql90Xn8tyA1kTUDHI6VpXgU0XExkSMqVpycvP477KdvLp4GzWC/Zl4awf6tGlgYx8VyKeKiI2JGFN1JP56jBEzf2R9Uip92jTg2esvom4Na31UNJ8qIsYY35edm8d/l+5gwpLt1Az25/VbO9KnbQOnY1VZVkSMMZXG1l+P8ujHP7Ix+Sh92jZgbP+LqGOtD0dZETHGeL3s3DzeTNjBa19uIywkgDeHduTaNtb68AZeX0REZADQB6gHvK6qnzubyBhTkTbvPcqImT+yae9R+rVryLP9L6J29UCnYxk3p5bHnQr0Bfaraut8+3sDr+JaHneyqr6gqvFAvIjUAsYDVkSM8WHxa5NPLUVbI9iftMwc6tQI4q0/daJ363OdjmcKqFb8IeViGtA7/w4R8QNeB64FLgSGiMiF+Q550v26McZHxa9NZtTsDSSnZKDAscwcqonw16tbWAHxUqKqzlxYpAkw/2RLRES6As+oai/39ij3oS+4/3yhqovPcL7hwHCAiIiITnFxceWYvuTS0tKoUaOG0zFOY5k85425fDHT3xLSOZz5x99JdYKF/8SEOpKpPHhjJoDY2Ng1qtq5JO/xpjGRSGBPvu0k4FLgQeBqIExEmqvqW4W9WVUnicg+oF9AQECnmJiY8s5bIgkJCVim4nljJvDOXL6WaWNyKoc/+7rQ1w5naqnP62tfJ2/jTUWksEdMVVUnABM8OYE9bGhM5ZOVk8fEL7fxesIOqgnkFdI50jA8pOKDGY94UxFJAhrl244C9pbkBDbtiTGVy4akVEbM/JGtvx5jYMdIOjeuxXPzt5CRnXvqmJAAP0b0inYwpTkTbyoiq4AWItIUSAYGA7c6G8kYUx5O5OTy2pLtvLl0B3VrBDLl9s70aFUfgNBA/1N3ZzUMD2FEr2gGdLCp3L2VU7f4zgBigLoikgSMUdUpIvIAsAjXLb5TVXVTSc5r3VnGeL/1SSk8+vGP/PRbGoM6RfFUnwsJCw049fqADpFWNCoRR4qIqg4pYv8CYEFpz2vdWcZ4rxM5uby6eBv/XbaTiBpBvDPsYmJb1nM6ljlL3tSdddasJWKMd1q3J4URH//Itv1p3Nw5iif6XEhYSEDxbzRez6eKiLVEjPEumdm5vLJ4G5OW7aD+OcFMu+NiYqKt9eFLfKqIWEvEGO+x9pcjPPrxj+w4cJzBFzdidJ9WnBNsrQ9f41NFxBjjvMzsXF7+4ifeXr6Tc88JZvqdl3DlBRFOxzLlxKeKiHVnGeOs7UdyGTthOTsPHGfIJecx+rqW1LTWh0/zqSJi3VnGOCMzO5f/fJ7I5O8yaRgewv/uuoTLW1jroyrwqSJijKl4a3YfZsTH69l58Dgxjfx57a7LrfVRhfhUEbHuLGMqTkZWLuM/T2TqNz/TMCyE9+66lJzkjVZAqhin1hMpF6o6T1WHe+MUy8b4klW7DnPdhOVM+fpnhl56Hov+egWXtajrdCzjAJ9qiRhjyldGVi4vLtrKtBW7iAwP4YO7L6VbcyseVZkVEWOMR77/+TAjZv7I7kPp/F/XxjzeuyXVg+xXSFVn3wHGmDNKz8rhxc8Smb5yF1G1QphxTxe6nl/H6VjGS/hUEbGBdWNKYH0cLBkLqUkQFgU9noa2N592yLc7D/HYzPX8cjidYd2aMKJXtLU+zGl86rvBnhMxxkPr42DeQ5Cd4dpO3ePaBmh7M8dP5PDiZ1uZvnI359UO5cPhXejSzFof5o98qogYYzy0ZOzvBeSk7AxYMpYV1a/i8VnrSTqSwR3dXa2P0ED7VWEKZ98ZxlRFqUmF7tbUJG59+zua1Anlo+FduaRp7QoOZiobKyLGVDV5uWT7VycgJ+0PLyXn1eHO7k0Z0SuakEA/B8KZysbrHzYUkWYiMkVEZjqdxZhKL+MIfHAzATlp5OjpP/7pGsibfrfydL8LrYAYjzlSRERkqojsF5GNBfb3FpFEEdkuIiMBVHWnqt7lRE5jfMqvG2FSDOxcyujsu/hb9n0k5dUlT4WkvLqMzL6bDzK6OJ3SVDJOdWdNAyYC757cISJ+wOtATyAJWCUic1V1syMJjfElG2bC3AchOIzjQ+cRPz2V9Kxc5mZddtphkeEhDgU0lZWoqjMXFmkCzFfV1u7trsAzqtrLvT0KQFWfd2/PVNVBZzjfcGA4QERERKe4uLjy/QRKKC0tDW+b08syec4bc3mSSfJyabbzXRolxZMSdiGzz/07ryeGcihTqSaQl+/HP7AaDGsdSLeGpZ9AsbJ+nSqaN2YCiI2NXaOqnUvyHm8aWI8E9uTbTgIuFZE6wD+BDiIy6mRRKUhVJ4nIPqBfQEBAp5iYmHIPXBIJCQlYpuJ5YybwzlzFZjp+CGYOg6RlZHW8m/FZt/Le6l9pFhHKpDvasedwOuMWJbI3JYOG4SGM6BXNgA6R5ZvJAZapfHlTEZFC9qmqHgLuq+gwxlRqe9fCR7fB8QNs7fIid6xtzm9Hf+XeK5vx16svIDjAj06Na5110TDGm+7OSgIa5duOAvaW5AQ2FbwxwLoPYEov8lSZ0HgivROiqB7kz6w/d2PUta0IDrA7r0zZ8aaWyCqghYg0BZKBwcCtJTmBzZ1lqrScLFg0Gla9zZH6XRlyeDg/bQ7izzHn83CPFlY8TLlw6hbfGcBKIFpEkkTkLlXNAR4AFgFbgDhV3VSS81pLxFRZx36Dd/vDqrdJqDOYzrvvJzekDnPu787jvVtaATHlxpGWiKoOKWL/AmBBac9rLRFTJe1ZBXG3kZuewhi/vzJj3yXcF9uMh3q0IMjfiocpX97UnXXWbBZfU+WsfgddMIJDfhH8KX0MWu8i5tzRlrZR4U4nM1WETxURa4mYKiPnBBckToR9X7BSOvDA8fsZGtuOB65qbq0PU6F8qohYS8RUCanJ5Hx4Gw33reG1nAEsrDOM6Td1pE1UmNPJTBXkU0XEWiLG5+36hhMzbiPnxHEezP4rLWJuJT62OYH+3nS3vqlKfOo7z+7OMj5LlfRlE8md1o+kjED+es7LdLn0cv7W8wIrIMZRPtUSMcYnZWeQ/N69RO7+hMV5nfip23gmXt2eFV8vczqZMVZEjPFmqXu3c3T6YCIzt/O/kKF0vO2fXB1Zy+lYxpziU0XExkSML1m1ZBYtlj9MmOYyv/XLDB54OwF+1nVlvItPfUfamIjxBYfTTjBn4mN0XHYXKX612D/kM/rfdIcVEOOVfKolYkxl9/na7TD3QW7QFWyLuJomd71DQMg5TscypkhnLCIi8rczva6qL5VtHGOqpkNpJ3ht5ucM3jmKFtWS2d/lCVr0GgFS2AoJxniP4loiNSskRRmxMRFTGX26fh+fxb/LP3JfJSjQH71lJvVa9HA6ljEeOWMRUdVni3pNRKqXfZyzY0+sm8rkYNoJxsSvp9mWt3g1YBZZdS8k+E8zoFZjp6MZ47Fix0REJBJoAKxX1SwRqQc8AgwD7L/8xnggfm1yvqVog+nRqj5frtvOM7mvcXXAavLa3Exwv1chMNTpqMaUSHFjIo8ATwDbgSAReRV4CXgX6FTu6YzxAfFrkxk1ewMZ2bkAJKdk8s23K3g/+BXO8/sVev2bapfea+MfplIqriUyHIhW1cMich6uYnKFqn5b/tGM8Q3jFiXSM3cpjwXG0VAOcoSaVCeDdK2ODJsLTS5zOqIxpVbcjeeZqnoYQFV/AX6q6AIiItVFZLqIvC0iQyvy2saUhc5Hv+CFgMlEVTtINYE6coxAcnk163orIKbSK64lEiUiE/Jt18u/raoPleaiIjIV6AvsV9XW+fb3Bl4F/IDJqvoCMBCYqarzROQj4P3SXNOYiqaqfLJuLyMC4giVrNNeqybKnwMXOpTMmLJTXBEZUWB7TRlddxowEdfYCgAi4ge8DvQEkoBVIjIXiAI2uA/LLaPrG1Ou9h/NZPScjSRsSWZb8MFCj6lP4fuNqUxEVZ25sEgTYP7JloiIdAWeUdVe7u1R7kOTgCOqOl9EPlTVwUWcbziuMRwiIiI6xcXFlfenUCJpaWl423QslslznuZSVVbszeGDrVm0yNvJG6GTaZi9q9BjM4Mi+Lbr5HLPVJEsk2e8MRNAbGzsGlXtXJL3FHd31twzva6q/UtysWJEAnvybScBlwITgIki0geYd4Ysk4BJANHR0RoTE1OG0c5eQkIClql43pgJPMv129FMRs/ewNdbk3ih9nwGZMxBgupCpz/DmmmQnfH7wQEhBPf5FzFtz3zOs81U0SyTZ7wxU2kV153VFdcv9hnAd0B53oNY2LlVVY8Dd3h0Anti3ThAVZn9QzLPzttE+9wNfF9rGmHpe6Dj/0HP5yAkHBp2hCVjITUJwqKgx9PQ9manoxtz1oorIufiGqMYAtwKfArMUNVN5ZAlCWiUbzsK2FsO1zGmzPyamsnoORtYtXUXL9WaRc+MhRDcBG6aC82u/P3Atjdb0TA+qbhpT3KBz4DPRCQIVzFJEJGxqvpaGWdZBbQQkaZAMjAYV+EyxuuoKjPXJDF2/mYuz/2eb8OmE5p5CLo9CDGj7clzU2V4Mu1JENAHVwFpgmuMYvbZXFREZgAxQF0RSQLGqOoUEXkAWITrFt+pJW3x2NxZpiLsS81g1OwNbEzczqTwD+iauRzCW0P/OIjs6HQ8YypUcQPr04HWwELgWVXdWBYXVdUhRexfACwo7XltTMSUJ1Xl49VJPDd/E310Kf+t8R6B2Zlw1ZPQ/RHwC3A6ojEVrriWyG3AceAC4CH5fW4fwTXo7VWr5VhLxJSXQxl53P7OKnZu28x7NafTLusHaNAF+r8GERc4Hc8YxxQ3JlKp1uO0logpa6rKR6v2MPbr49zmN4cpoXH44w/XjYfOd0G1SvUjYkyZ86nlca0lYspSckoGI2et59ft65gVMolWeduh2TXQ5yUIb1T8CYypAnyqiBhTFlSVGd/vYdyC9dzNHO4LjifXLxQGTIY2g2zKdmPy8akiYt1Z5mwlHUln5KwNHN+xknnVpxCV8wu0volva/aje9vrnY5njNfxqQ5dVZ2nqsO9cU4a493y8pT3vt3NDS9/Tq89LzM76BkiQ/Pg1ji4cTLZgWFORzTGK/lUS8SY0thzOJ3HZ63H7+evWBDyDhG5v8HF98DVYyCoptPxjPFqPlVErDvLlERenvL+d7t5Y+FqHpd3GRC4FA1vAf2nQ+OuTsczplLwqSJid2cZT/1yKJ3HZq6jzu6FfBb8LueQBt0fRa4YAQHBTsczptLwqSJiTHHy8pT/fbubqQtX8Ey1KcQGrkbrt0eunwjntnE6njGVjhURU2XsPnScxz5eR7M9s1gYOINgP4XY55Au94Of/SgYUxr2k2N8Xl6eMn3lLj76LIHnqk3i4oDNaOPLkf4ToHYzp+MZU6n5VBGxgXUDEL82mXGLEtmbkkG9c4KoGSBcnRLH3MDZ+AcGQ6/XkA632UODxpQBnyoiNrBu4tcm8/WcN/iID2kYdJADJ8LJyvSnUcBBNLovct14OKeB0zGN8Rk+VUSMWffpJMbKJEIlC4D6pKBAXLW+3Dz4fWfDGeODfOqJdVO15eYpd2e9d6qAnCQC3XK+dSiVMb7NiojxCTsOpDH0raVEysFCX29Y7VAFJzKmavD67iwRaQY8AYSp6iCn8xjvkpunTP36ZxZ9voB/+79R5Fh5Zsi52KrnxpS9cm2JiMhUEdkvIhsL7O8tIokisl1ERp7pHKq6U1XvKs+cpnLavj+NwW8u5cTnz/CR/1M0qZEH3R8mx+/0J85z/IIJvXasQymN8W3l3RKZBkwE3j25Q0T8gNeBnkASsEpE5gJ+wPMF3n+nqu4v54ymksnNUyYv38nCLxYxzv8NWvjvQdsPRXr9C0LC8a/fGpaMhdQkCIvCv8fT0PZmp2Mb45NEVcv3AiJNgPmq2tq93RV4RlV7ubdHAahqwQJS8Dwzz9SdJSLDgeEAERERneLi4srmEygjaWlpeNsU9ZUx0960PKatP06f9Nk84B9PVkAY21o+wOE6nR3N5QTL5BnL5LnY2Ng1qlqyHyZVLdc/QBNgY77tQcDkfNu3ARPP8P46wFvADmBUMdfqB0xq2LChepuvvvrK6Qh/UJkyZefk6htfbdd+T7ypW8e0UR1zjubNukc1/bCjuZxkmTxjmTwHrNYS/o53YmC9sKHPIptDqnoIuK/84hhv99NvxxgZt4buv/6POQFzkNDa0P8DpGUfp6MZU+U5UUSSgEb5tqOAvWVxYrUn1n1KTm4e/122kwWLv2R8wJu0CtiJth6EXDcOQms7Hc8YgzNFZBXQQkSaAsnAYODWsjixzZ3lOxJ/PcbjH/9At1/fJz5wNn7BYdDvXeRCW+fcGG9SrkVERGYAMUBdEUkCxqjqFBF5AFiE646sqaq6qSyuZy2Ryi8nT5n45TY+XZLAuIC3aB2wHVpdD31egup1nY5njCmgXIuIqg4pYv8CYEFZX89aIpXb1l+P8s+V6fRM/w9zA2fiF1wT+rwDrQc6Hc0YUwSvf2K9JKwlUjll5+bxZsIO5n+5lFf836RdwHaI7gt9X4Ya9ZyOZ4w5A58qItYSqXw27z3K4x//wCX7P2Z+YBz4BUL/ydBmkK33YUwl4FNFxFoilUd2bh5vfLWDuV8uZ3zgJDoEbIEWvVlR5xa6tbXuK2MqC58qItYSqRw27U3lsbh1dD4wi4VBH+IfGATXvgXtBpO1dKnT8YwxJeBTRcRaIt4tKyeP17/aztyvvmF80Nt0CtgE5/eE/hPgHCv8xlRGPlVEjPfamJzKiLi1dDoYz2dBHxIY4A+9J0KHP9nYhzGVmBURU66ycvKY+OU24hO+ZXzQ21wSsAGaxkL/1yC8UfEnMMZ4NZ8qIjYm4l02JKUy4uN1tD84l8+D3yfIrxr0egU6DbPWhzE+wqeKiI2JeIcTObm8tmQ78Uu/Z3zQ23QJ+BEaXwH9J0Ktxk7HM8aUIZ8qIqbixa9NZtyiRPamZNAwPIRbLo5i/o97aXfoU74Ifp9gP4We46HzXVCtXBfSNMY4wIqIKbX4tcmMmr2BjOxcAJJTMnj/i+8YFzyFKwLWQqPucP3rULupw0mNMeXFp4qIjYlUrHGLEumZu5THAuNoKAdJoQbBnKAaAr3/DZcMt9aHMT7Op37CVXWeqg73xmUnfVHno1/wQsBkoqodpJpAbUkjiBzGZw+CLvdZATGmCrCfclMqa385wmMBcYRK1mn7/US5O+ALh1IZYyqaT3VnmfKXmZ3Ly1/8xJTl29kWdLDQY+pT+H5jjO+xImI89sMvRxjx8Y+kHtjLZ3UnI2mFHydhURUbzBjjGK/vzhKRASLytoh8IiLXOJ2nKsrMzuVfC7Yw6M0VRJ/YyDe1xtA8cxN0vB0CQk4/OCAEejztTFBjTIUr1yIiIlNFZL+IbCywv7eIJIrIdhEZeaZzqGq8qt4DDANuKce4phBrdh/muleXM2nZDt5ospzXs58mKKQG3L3YNXFivwkQ1ggQ19/9JkDbm52ObYypIOXdnTUNmAi8e3KHiPgBrwM9gSRglYjMxbXe+vMF3n+nqu53f/yk+32mAmRk5fKfzxOZ8s3PRJ+Ty5rm06mTtBguvN715HnwOa4D295sRcOYKkxUtXwvINIEmK+qrd3bXYFnVLWXe3sUgKoWLCAn3y/AC8AXqrr4DNcZDgwHiIiI6BQXF1eWn8ZZS0tLw9tuPS4q009Hcpmy4QS/pSt3NPiFEekvEZx1iB3n30FyZN9ynffKG79O4J25LJNnLJPnYmNj16hq55K8x4mB9UhgT77tJODSMxz/IHA1ECYizVX1rcIOUtVJwCSA6OhojYmJKZu0ZSQhIQFvz5SRlcu4RYm88/3PRIUHs6TzRs5f8w+oXg/+tIgWjS6mRQVn8hbemMsyecYylS8nikhh/40tsjmkqhOACR6d2J5YL7Xvfz7MiJk/svtQOvdcEsHjOf/F//uZ0PxquGESVK/jdERjjBdyoogkAfkXkogC9jqQwwDpWTm8+Fki01fuolGtUOJvqkP7lQ/AoW1w1ZNw2d/tyXNjTJGcKCKrgBYi0hRIBgYDtzqQo8rbejiXp19Zzi+H0xnWrQmjon4kaOHfIbA63BYPza50OqIxxsuV9y2+M4CVQLSIJInIXaqaAzwALAK2AHGquqksrmdzZ3nm+IkcxnyykRe+z0QE4u7qwDMyiaC5f4YG7eHe5VZAjDEeKdeWiKoOKWL/AmBBWV/PxkSKt2LHQR6ftZ6kIxn0bOzPhIFRhMy5BX5dD90fgaueAj+byMAY4xmf6uy2lkjRjp/I4an4jdz69nf4iRB3b1cerruWkKk9IGU3DPkQej5rBcQYUyI+9RvDWiKFW7H9II/NWk9ySgZ3XdaUR3s0I2TZc7BpIjTsADdNg1pNnI5pjKmEfKqI2Brrp0s7kcPzC7bw/ne/0LRudT6+tyuda2fCB9fDnm9JbngtkXdOB/8gp6MaYyopnyoi5ndfb3ONfexNzeCey5vy92uiCf5lKbx1N2Rnwo1T2HaoLpFWQIwxZ8Gnioh1Z8GxzGz+tWArM77/hWYR1Zl5X1c6NQqDZeMg4QWIaAk3vwsRF0BCgtNxjTGVnE8VkarenbV82wFGztrAvtQM7r2iGX/teQHBWUfg/UGw40toOxj6vuR6DsQYY8qATxWRqupoZjbPL9jCjO/3cH5EdWb+uRsdz6sFv3wLH98B6Yeg36uu9T/KcfJEY0zV41NFpCp2Zy396QAjZ63nt6OZ3Hfl+TxydQuC/avBiomweIxrjY+7v4AG7ZyOaozxQT5VRHy9Oyt+bTLjFiWyNyWDc8OCaVw7lG9/PkzzejWYfX932jcKh4wUmPUX2DofWvaFAW9AcJjT0Y0xPsqniogvi1+bzKjZG8jIzgVgX2om+1Iz6dGqHq/f2pHgAD/Y9yPE/R+kJsE1/4Suf7HuK2NMubIiUkmMW5R4qoDkt3XfMVf31ZppsOAxCK0DwxbAeWdaosUYY8qGFZFKIjklo9D9R1KOwJz7YP2HcP5VMPBtqF63gtMZY6oqnyoivjiwnpqezdj5mwt97XxJ5u3gCbA+CWJGwxWPQjW/Ck5ojKnKfKqI+NrA+uLNvzF6zgYOHc/imgvrUXN7PH/lQxrKQVKoSSjpSEAY3DIHzo91Oq4xpgryqSLiK1LSsxg7bzOz1ybT8tyaTB12Ma0PLSJn92T8czMBqM0xFEF6jLQCYoxxjBURL/OFu/Vx5HgWD/VowQOxzQn0rwZxz54qICcJCiteg0vvdSitMaaqsyLiJY4cz+LZeZuIX7eXVg3O4Z1hF9M6MgwObnPdeZWaVPgbi9pvjDEVwOuLiIi0Ah4G6gJLVPVNhyOVuUWbfuWJORtJSc/ikatbcH/3SAJ/mgeLpsMvK6CaP/iHQE4hd2iFRVV8YGOMcSvvNdanish+EdlYYH9vEUkUke0iMvJM51DVLap6H3Az0Lk881a0w8ezeGjGWu793xrq1Qxi0ZDaPHJiEoGvtII590Lab3D1s/C3LdB/AgSEnH6CgBDo8bQz4Y0xhvJviUwDJgLvntwhIn7A60BPIAlYJSJzAT/g+QLvv1NV94tIf2Ck+1w+4bON+3gyfiM5GUeZ0no7sccXUm3WWvALgguvh063Q+Puvz9x3vZm199Lxrq6sMKiXAXk5H5jjHGAqGr5XkCkCTBfVVu7t7sCz6hqL/f2KABVLVhACjvXp6rap4jXhgPDASIiIjrFxcWVzSdQRtLS0qhRowZHs5T3NmWSvT+Ru0IS6MVKAvIySavemH0NevJb/RhyAmpWaCZv4o2ZwDtzWSbPWCbPxcbGrlHVEvX4ODEmEgnsybedBBQ5R4eIxAADgSBgQVHHqeokEdkH9AsICOgUExNTFlnLTEJCAtk165M4/788l7eY6KA9qF91pPVN0GkYNSI70UKEFhWcyRu/Tt6WCbwzl2XyjGUqX04UkcJmBCyyOaSqCUBCeYUpd6qkbvkKv2/G0zXre3pKNhn12kGXR5HWN0JQxbQ6jDGmPDhRRJKARvm2o4C9ZXFir3piPW0/rHuf4yvfIez4btpqKImRA7mwz18IibS1PYwxvsGJIrIKaCEiTYFkYDBwa1mc2PG5s/JyYcdX8MM0NHEhkpfDxryWfHPO32nQ4mKGXH+tM7mMMaaclGsREZEZQAxQV0SSgDGqOkVEHgAW4boja6qqbiqL6znWEklNgrXvuf6k7uFEYG0+zLuWD7Jjub7nlTx0eTO+Xr6sQiMZY0xFKNcioqpDiti/gDMMkpdWhbZEcrPhp89gzXTYvhiArMZXMi34TsbtPp8LG9Vl4qC2tKhvYx7GGN/l9U+sl0SFtEQO7YAf3oV1H8Dx/VCzIXrFo3wRdA2PLUkhPSuXv197AXdf1hR/v3J9ltMYYxznU0WkzFoi6+NOf6gvZhT4B7nmsNq1HMQPLugNHf+P/edexpOfbOXzzb/RvlE4429qS/N61vowxlQNPlVEyqQlsj4O5j0E2e55qlL3wCf3uz4ObwxXPQXth6I1z+WTdXsZ88oKMrJzGX1dS+66rBl+1WxNc2NM1eFTRaRMWiJLxv5eQPKrHgEPrYNq1dh/NJPR765h8Zbf6HheOC8Oakfzet739KkxxpQ3nyoiZdISKWpq9eMHURHm/JDEs/M2k5mdy5N9WnFH96bW+jDGVFk+VUTKRFiUqwurgNyakQyfvpolW/fTqXEtxg1qS7MIa30YY6o2u32ooB5Pk+MXfNquLAli9LEb+GbHQZ7qeyFx93a1AmKMMfhYS6QsxkTic7vzdfbdPMKHNJRD7NU6vJhzMxtq92DhsEtoWrd62QU2xphKzqeKSFmMiYxblEhyVjdm0u20/Q1z8qyAGGNMAdadVcDelELuzAL2pWRWcBJjjPF+VkQKaBgeUqL9xhhTlflUERGRfiIyKS0trdTnGNErmpAAv9P2hQT4MaJX9NnGM8YYn+NTRURV56nq8LNZdnJAh0ieH9iGyPAQBIgMD+H5gW0Y0CGy7IIaY4yP8KmB9bIyoEOkFQ1jjPGAT7VEjDHGVCwrIsYYY0rNiogxxphSsyJijDGm1KyIGGOMKTVRVaczlDkROQYkOp2jgLrAQadDFGCZPOeNuSyTZyyT56JVtURLs/rqLb6JqtrZ6RD5ichqy1Q8b8wE3pnLMnnGMnlORFaX9D3WnWWMMabUrIgYY4wpNV8tIpOcDlAIy+QZb8wE3pnLMnnGMnmuxLl8cmDdGGNMxfDVlogxxpgKYEXEGGNMqflUERGRqSKyX0Q2Op3lJBFpJCJficgWEdkkIg97QaZgEfleRH50Z3rW6UwniYifiKwVkflOZwEQkV0iskFE1pXm9sfyICLhIjJTRLa6v6+6ekGmaPfX6OSfoyLyiBfk+qv7e3yjiMwQkWAvyPSwO88mp75Ghf2uFJHaIvKFiGxz/13Lk3P5VBEBpgG9nQ5RQA7wd1VtBXQB/iIiFzqc6QRwlaq2A9oDvUWki7ORTnkY2OJ0iAJiVbW9F93X/yrwmaq2BNrhBV8vVU10f43aA52AdGCOk5lEJBJ4COisqq0BP2Cww5laA/cAl+D6t+srIi0ciDKNP/6uHAksUdUWwBL3drF8qoio6jLgsNM58lPVfar6g/vjY7h+4B1drERdTi7/GOD+4/gdFiISBfQBJjudxVuJyDnAFcAUAFXNUtUUR0P9UQ9gh6rudjoIrgeqQ0TEHwgF9jqcpxXwraqmq2oOsBS4oaJDFPG78npguvvj6cAAT87lU0XE24lIE6AD8J3DUU52G60D9gNfqKrjmYBXgMeAPIdz5KfA5yKyRkSGOx0GaAYcAN5xd/tNFpHqTocqYDAww+kQqpoMjAd+AfYBqar6ubOp2AhcISJ1RCQUuA5o5HCmk+qr6j5w/ecXqOfJm6yIVBARqQHMAh5R1aNO51HVXHfXQxRwibuZ7RgR6QvsV9U1TuYoRHdV7Qhci6sr8gqH8/gDHYE3VbUDcBwPux0qgogEAv2Bj70gSy1c/7tuCjQEqovIn5zMpKpbgH8DXwCfAT/i6vKutKyIVAARCcBVQN5X1dlO58nP3RWSgPNjSd2B/iKyC/gQuEpE3nM2EqjqXvff+3H18V/ibCKSgKR8LceZuIqKt7gW+EFVf3M6CHA18LOqHlDVbGA20M3hTKjqFFXtqKpX4OpS2uZ0JrffRKQBgPvv/Z68yYpIORMRwdV/vUVVX3I6D4CIRIhIuPvjEFw/bFudzKSqo1Q1SlWb4OoO+VJVHf1fo4hUF5GaJz8GrsHVHeEYVf0V2CMi0e5dPYDNDkYqaAhe0JXl9gvQRURC3T+HPfCCmxBEpJ777/OAgXjP12sucLv749uBTzx5k0/N4isiM4AYoK6IJAFjVHWKs6noDtwGbHCPQQCMVtUFzkWiATBdRPxw/UciTlW94pZaL1MfmOP6/YM/8IGqfuZsJAAeBN53dx3tBO5wOA8A7j7+nsC9TmcBUNXvRGQm8AOuLqO1eMd0I7NEpA6QDfxFVY9UdIDCflcCLwBxInIXrgJ8k0fnsmlPjDHGlJZ1ZxljjCk1KyLGGGNKzYqIMcaYUrMiYowxptSsiBhjjCk1KyLGOEBE7hOR/3N/PExEGpbiHLtEpG7ZpzPGcz71nIgxlYWqvpVvcxiuhxidnhzQmBKzlogxuCbHdK/PMdm91sP7InK1iHzjXl/hEvefFe6JD1ecfGrc/UR0nIisF5GPROQ7Eensfi1NRP7pXrvlWxGp797/jIg8KiKDgM64Hh5cJyIh+VsYItJZRBLcH9cRkc/d1/8vIPny/0lca8SsE5H/uh8kNabcWREx5nfNca3V0RZoCdwKXAY8CozGNTXMFe6JD58G/uV+3/3AEVVtCzyHaz2Nk6rjmvq7HbAM11oSp6jqTGA1MNS9HkfGGfKNAb52X38ucB6AiLQCbsE1WWR7IBcYWpovgDElZd1ZxvzuZ1XdACAim3At0KMisgFoAoThmi6mBa4p4gPc77sMV/FBVTeKyPp858wCTk4pswbXtCCldQWuuZZQ1U9F5OR0GT1wFa5V7ilaQvBw8jxjzpYVEWN+dyLfx3n5tvNw/aw8B3ylqje414ZJcL8uFC1bf59bKBfPfuZy+L2XoOByroXNUyTAdFUd5cG5jSlT1p1ljOfCgGT3x8Py7f8auBnAvfRxmxKe9xhQM9/2Ln7vErsx3/5luLupRORa4OQa2EuAQflmh60tIo1LmMGYUrEiYoznXgSeF5FvcK3XfdIbQIS7G+txYD2QWoLzTgPeOjmwDjwLvCoiy3G1Xk56FteqeD/gmpb+FwBV3Qw8iWsFxvW4FjxqUIrPz5gSs1l8jTlL7juhAlQ1U0TOx9UyuEBVsxyOZky5szERY85eKPCVewVLAf5sBcRUFdYSMcYYU2o2JmKMMabUrIgYY4wpNSsixhhjSs2KiDHGmFKzImKMMabU/h9ieD5cl7IWfAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.semilogy(mag, MRI_fit, '-o', label='fitted, all data')\n", "plt.semilogy(mag_valid, MRI_valid, '-o', label='original')\n", "plt.xlim(1,10)\n", "plt.grid()\n", "plt.legend()\n", "plt.xlabel('magnitude')\n", "plt.ylabel('MRI')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "00592ad0-09ff-41c0-85fc-83db8d831d57", "metadata": {}, "source": [ "**Answer:**" ] }, { "cell_type": "markdown", "id": "f214a0c5-e342-4bc7-8fad-2d9eab7504d6", "metadata": {}, "source": [ "| Magnitude range | total \\# of earthquakes 1983-2012 (30 years) | average # of earthquakes per year | MRI (mean recurrence interval in years) | One year probability of earthquake occurring | One year probability of earthquake **not** occurring |\n", "|--|--|--|--|--|--|\n", "| 1.0-1.9 | 76487 | | | | |\n", "| 2.0-2.9 | 21471 | | | | |\n", "| 3.0-3.9 | 1830 | | | | |\n", "| 4.0-4.9 | 209 | | | | |\n", "| 5.0-5.9 | 26 | | | | |\n", "| 6.0-6.9 | 2 | | | | |\n", "| 7.0-7.9 | 0 | | | | |\n", "| 8.0-8.9 | 0 | | | | |\n", "| 9.0-9.9 | 0 | | | | |" ] }, { "cell_type": "markdown", "id": "8865a175-b120-45d2-8d03-3d0ce7fde970", "metadata": {}, "source": [ "**Question 2.4** Find the probability of a magnitude 7.0-7.9 earthquake occurring in the San Francisco in the next year – the annual probability of event. Compare that to the annual probability in Los Angeles." ] }, { "cell_type": "markdown", "id": "24c93083-9e9f-440c-b5f8-c50a1ad6029e", "metadata": {}, "source": [ "**Answer:**" ] }, { "cell_type": "markdown", "id": "4863a8ec-7fbe-4547-8d5f-2ea6e5fd7736", "metadata": {}, "source": [ "

\n", "

" ] }, { "cell_type": "markdown", "id": "03709f67-97c5-4cc0-8c80-76bda8027a92", "metadata": {}, "source": [ "**Question 2.5** Not a very high probability, perhaps, but then a year isn’t very long! Let’s say you are living in the Los Angeles area and take out a 30-year mortgage on a house. What is the probability of a magnitude 7.0-7.9 earthquake occurring during that 30-year period? How does this value compare to the probability of such an earthquake occurring in the San Francisco area in the next 30 years? *Hint:* You can modify the code for calculating the joint probability for San Francisco as provided below:" ] }, { "cell_type": "code", "execution_count": 86, "id": "4faf8bd9-3ac7-44b1-9fad-99719c0466a0", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Probability of a magnitude 7.0-7.9 earthquake occurring in the San Francisco are during that 30-year period is 45.45 percent.\n" ] } ], "source": [ "MRI = 50\n", "num_years = 30\n", "prob = (1 - (1 - 1/MRI) ** num_years)*100\n", "print(\"Probability of a magnitude 7.0-7.9 earthquake occurring in the San Francisco are during that 30-year period is %.2f percent.\"%(prob)) " ] }, { "cell_type": "markdown", "id": "93304e6a-5c7f-4a40-86c3-c2df7b6110ac", "metadata": {}, "source": [ "**Answer:**" ] }, { "cell_type": "markdown", "id": "bf5d1df8-ec63-46c9-8a24-51089e7bc950", "metadata": {}, "source": [ "

\n", "

" ] }, { "cell_type": "markdown", "id": "cb4fde1c-582e-4309-b6f4-78740c68bffa", "metadata": {}, "source": [ "----\n", "### Mini-tutorial\n", "\n", " - **Mean and Standard Deviation with numpy**\n", " - **Statistical distributions and confidence intervals**\n", " \n", "Consider a set of observations $x_i$ from $i = 1$ to $N$. The mean observation is denoted by $\\bar{x}$ and is obtained by summing all observations $x_i$ and dividing by the number of observation $N$:\n", "\n", "$$ \\bar{x} = \\frac{1}{N}\\sum_{i=1}^N x_i = \\frac{x_1 + x_2 + x_3 + \\cdots + x_N}{N} $$Standard deviation ($\\sigma$) is a measure that represents about the spread in observed values in the sample of observations. The formula is not intuitive to most people:\n", "\n", "$$ \\sigma = \\sqrt{\\frac{\\sum_{i=1}^N (x_i - \\bar{x})^2}{N - 1}} $$\n", "\n", "The equation can be read as: *For each of the $N$ observations, calculate the deviation of the\n", "observation from the calculated mean. Square all of these deviations and sum them. Divide this sum by the total number of observations $N$ minus one. Finally, take the\n", "square root of this number to arrive at the standard deviation $\\sigma$.*" ] }, { "cell_type": "code", "execution_count": null, "id": "c8cc2a6e-1c86-48f8-aad2-4d37f2ecc3b1", "metadata": {}, "outputs": [], "source": [ "from scipy import stats, optimize, special, integrate\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": null, "id": "a6fffc51-8897-4111-abed-bbac93e5e6e7", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "x = [ 2 3 5 10 15]\n", "mean = 7.00\n", "std = 4.86\n" ] } ], "source": [ "x = np.array([2, 3, 5, 10, 15])\n", "print(\"x =\", x)\n", "print(\"mean = {:.2f}\".format(np.mean(x)))\n", "print(\"std = {:.2f}\".format(np.std(x)))" ] }, { "cell_type": "markdown", "id": "fb57f33d-7425-436c-ae67-fe50f235c167", "metadata": {}, "source": [ "Once you know the mean $\\bar{x}$ and standard deviation $\\sigma$ of a *normal distribution*, you can\n", "define the probability distribution that describes the probability of obtaining a measurement\n", "in a certain range of $x$. Note that all probability distributions have unit area such that $\\int_{-\\infty}^{\\infty} P(x)$ = 1. The probability distribution is a curve that can be described\n", "mathematically by the formula\n", "\n", "$$ P(x) = \\frac{1}{\\sigma \\sqrt{2\\pi}} \\exp \\left\\{-\\frac{(x - \\bar{x})^2}{2\\sigma^2} \\right\\} $$\n", "\n", "\n", "In this formula, $P(x)$ does not represent the probability of observing exactly $x$. Instead, $P(x)$\n", "is called a probability density function, and the probability of observing a value between two\n", "arbitrary values $a$ and $b$ is the area beneath the curve in the range $[a, b]$ (meaning 'a to b' with both values included).\n", "For example, the probability that the next observation x lies between the mean minus one\n", "standard deviation and the mean plus one standard deviation (between $\\bar{x}-\\sigma$ and $\\bar{x}+\\sigma)$ is \n", "simply the area beneath $P(x)$ over the interval $[\\bar{x}-\\sigma, \\bar{x}+\\sigma]$. This area turns out to be 0.68.\n", "Since 0.68 = 68%, you can also express this result as: *we are 68% confident that the measurement will lie between $\\bar{x}-\\sigma$ and $\\bar{x}+\\sigma$*.\n", "\n", "It is important to remember that quite often, we do not actually observe the normal distribution. We\n", "collect a *sample* (usually not that large) and calculate the mean and the standard deviation.\n", "We then make the assumption that the *underlying population* has a normal distribution. This\n", "is not always true. When only a small number of measurements from a *sample* are used to estimate $\\bar{x}$ and $\\sigma$ of the entire *population*, these numbers are less certain. In such cases, the probability distribution is \n", "more accurately described by *Student's t-distribution*, which takes into account the\n", "uncertainties in $\\bar{x}$ and $\\sigma$ as well due to the limited sampling. Basically, this uncertainty will act to *spread out* the\n", "normal distribution when only few observations are used, since we are less certain about the distribution." ] }, { "cell_type": "markdown", "id": "456e5ef7-674e-40a8-b74a-baf043ade699", "metadata": { "tags": [] }, "source": [ "" ] }, { "cell_type": "markdown", "id": "f3b1cbd4-b55a-441c-87d1-a78053c161d7", "metadata": {}, "source": [ "The probability distribution of a *Student's t-distribution* is a curve that has unit area and is described mathematically by the formula:\n", "\n", "$$ P(x|\\nu, \\bar{x}, \\sigma) = \\frac{\\Gamma\\left(\\frac{\\nu+1}{2}\\right)}{\\sigma\\sqrt{\\nu\\pi}\\ \\Gamma\\left(\\frac{\\nu}{2}\\right)} \\left(1 + \\frac{(x-\\bar{x})^2}{\\sigma^2 \\nu} \\right)^{-\\frac{\\nu+1}{2}} $$\n", "\n", "where $\\nu$ is the degree of freedom (number of samples minus one), $\\bar{x}$ is the sample mean, $\\sigma$ is the sample standard deviation, and $\\Gamma(z) = (z - 1)!$ (see [the gamma function](https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.gamma.html))." ] }, { "cell_type": "markdown", "id": "fab4cedc-7480-4999-885c-aa4f94d57d51", "metadata": {}, "source": [ "The example below illustrates how samples are generated from a Normal distribution with known population mean and population standard deviation. When you answer the questions below, you will be supplied with the data (treated as *samples*) without any knowledge of the underlying *population* mean and population standard deviation." ] }, { "cell_type": "code", "execution_count": null, "id": "b219b3e2-1bba-4c66-b901-9baa55f192f3", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([49.30996753, 20.97160251, 40.41776131, 18.44689402, 44.1202185 ])" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "popmean,popstd = 30, 12\n", "N = 5\n", "#s = np.random.normal(popmean, popstd)\n", "s = np.array([49.30996753, 20.97160251, 40.41776131, 18.44689402, 44.1202185 ]) # one random output from the command above\n", "s" ] }, { "cell_type": "markdown", "id": "ba67809b-3fb4-45a3-a8aa-6b45cf992723", "metadata": {}, "source": [ "Let's pretend we do not know the population mean and the population standard deviation, and then we calculate the sample mean and the sample standard deviation." ] }, { "cell_type": "code", "execution_count": null, "id": "d8a0069a-b762-43e0-b55f-77bc83d22ef8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sample size N = 5\n", "Sample mean = 34.65\n", "Sample std = 12.55\n" ] } ], "source": [ "samplemean = np.mean(s)\n", "samplestd = np.std(s)\n", "\n", "print(\"Sample size N = %d\" % N)\n", "print(\"Sample mean = %.2f\" % samplemean)\n", "print(\"Sample std = %.2f\" % samplestd)" ] }, { "cell_type": "markdown", "id": "b925a8ff-e0fc-4604-a6e9-e1ef3a131407", "metadata": {}, "source": [ "Now, we will construct the probability density of the Student's t-distribution from the *sample mean, the *sample* standard deviation, and the *sample* size using the function below." ] }, { "cell_type": "code", "execution_count": null, "id": "5eed5ae7-fef2-40dc-b929-0108c806c50e", "metadata": {}, "outputs": [], "source": [ "def tdist_probability_density(x, dof, mean, std):\n", " '''\n", " Compute the probability density of the Student's t-distribution\n", " \n", " Input Parameters:\n", " ----------------\n", " \n", " x: (array of) location(s) where the probability density is computed\n", " dof: degree of freedom; equals to the sample size minus one\n", " mean: sample mean\n", " std: sample standard deviation\n", " \n", " Return:\n", " ------\n", " \n", " p: probability density at all given x\n", " \n", " '''\n", " p = special.gamma((dof + 1) / 2) / special.gamma(dof / 2) / np.sqrt(np.pi * dof * std ** 2) * \\\n", " (1 + (x - mean) ** 2 / std ** 2 / dof) ** (-(dof + 1) / 2)\n", " return p\n", "\n", "def ndist_probability_density(x, mean, std):\n", " '''\n", " Compute the probability density of the Normal distribution\n", " \n", " Input Parameters:\n", " ----------------\n", " \n", " x: (array of) location(s) where the probability density is computed\n", " mean: sample mean\n", " std: sample standard deviation\n", " \n", " Return:\n", " ------\n", " \n", " p: probability density at all given x\n", " \n", " '''\n", " p = np.exp(-1/2 * (x - mean) ** 2 / std ** 2) / np.sqrt(2 * np.pi * std ** 2)\n", " return p" ] }, { "cell_type": "markdown", "id": "bfd5efc2-055a-428e-94f4-5f62e131efc3", "metadata": {}, "source": [ "The *cumulative density function* (CDF) is obtained by integrating the probability density function from $-\\infty$ to $x$." ] }, { "cell_type": "code", "execution_count": null, "id": "a33f072d-c518-4b07-abdc-5ea56a5a376f", "metadata": {}, "outputs": [], "source": [ "def tdist_cumulative_density(x, dof, mean, std):\n", " '''\n", " Compute the cumulative density of the Student's t-distribution\n", " \n", " Input Parameters:\n", " ----------------\n", " \n", " x: (array of) location(s) where the probability density is computed\n", " dof: degree of freedom; equals to the sample size minus one\n", " mean: sample mean\n", " std: sample standard deviation\n", " \n", " Return:\n", " ------\n", " \n", " c: cumulative density at all given x\n", " \n", " '''\n", " c = integrate.quad(tdist_probability_density, -np.inf, x, args=(dof, mean, std))[0]\n", " return c\n", "\n", "def ndist_cumulative_density(x, mean, std):\n", " '''\n", " Compute the cumulative density of the Normal distribution\n", " \n", " Input Parameters:\n", " ----------------\n", " \n", " x: (array of) location(s) where the probability density is computed\n", " mean: sample mean\n", " std: sample standard deviation\n", " \n", " Return:\n", " ------\n", " \n", " c: cumulative density at all given x\n", " \n", " '''\n", " c = integrate.quad(ndist_probability_density, -np.inf, x, args=(mean, std))[0]\n", " return c" ] }, { "cell_type": "markdown", "id": "5cca4cde-697b-48fe-9e3b-3434351d8b2b", "metadata": {}, "source": [ "Here is how to calculate the value such that there is a 95% chance that a sample drawn from the Student's t-distribution is smaller" ] }, { "cell_type": "code", "execution_count": null, "id": "0caeba1f-e8aa-4298-bbe6-c6802c3428e7", "metadata": {}, "outputs": [], "source": [ "def find_confidence_interval_onesided(dof, mean, std, prob, distribution='t'):\n", " '''\n", " Computes the value to give any probability that a sample draw from \n", " the Student's t-distribution is smaller than this value. In other words,\n", " this function finds the value such that CDF(value | dof, mean, std) = prob.\n", " \n", " Input Parameters:\n", " ----------------\n", " \n", " dof: degree of freedom; equals to the sample size minus one\n", " mean: sample mean\n", " std: sample standard deviation\n", " prob: target probability\n", " distribution: which type of distribution ('t' or 'normal')\n", " \n", " Return:\n", " ------\n", " \n", " value: a value such that CDF(value) = prob\n", " \n", " '''\n", " # function to optimize\n", " # which is the difference between the cumulative distribution and target probability\n", " if distribution == 't':\n", " def func_to_optimize(x, dof, mean, std, prob):\n", " return tdist_cumulative_density(x, dof, mean, std) - prob\n", " else:\n", " def func_to_optimize(x, dof, mean, std, prob):\n", " return ndist_cumulative_density(x, mean, std) - prob\n", " \n", " # x0 and x1 are initial and second guesses\n", " value = optimize.root_scalar(func_to_optimize, args=(dof, mean, std, prob), x0=mean, x1=mean+std).root\n", " return value" ] }, { "cell_type": "code", "execution_count": null, "id": "ca539a44-86f8-4851-9bbe-e0534033593e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "61.407853899787334" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "find_confidence_interval_onesided(N-1, samplemean, samplestd, 0.95) # 95% == 0.95" ] }, { "cell_type": "code", "execution_count": null, "id": "6bb06350-c36e-47bd-af50-907887827ca9", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "4.604094871350386" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "P = 0.005\n", "find_confidence_interval_onesided(N-1, 0, 1, 1-P) " ] }, { "cell_type": "markdown", "id": "1792604a-e320-4a8d-a242-c7d0d8d4d88c", "metadata": {}, "source": [ "Values of $t$ score ($t = \\frac{x - \\bar{x}}{\\sigma}$) corresponding to given values of $P$ and $\\nu$ degree of freedom are provided in the table below. The value $P$ is defined as the area under the probability density curve to the right of $t$. The area under the probability density curve to the left is the cumulative density function. The value corresponding to the figure below is marked in **bold** inside the table.\n", "\n", "\n", "\n", "| Degree of freedom $\\nu$ |P=0.005|P=0.01 |P=0.025|P=0.05 |P=0.10 |P=0.25 |\n", "|-------------------------|-------|-------|-------|-------|-------|-------|\n", "| 1 |63.657 |31.281 |12.706 | 6.314 | 3.078 | 1.000 |\n", "| 2 | 9.925 | 6.945 | 4.303 | 2.920 | 1.886 | 0.816 |\n", "| 3 | 5.841 | 4.541 | 3.182 | 2.353 | 1.638 | 0.765 |\n", "| 4 | 4.604 | 3.747 | 2.776 | 2.132 | **1.533** | 0.741 |\n", "| 5 | 4.032 | 3.365 | 2.571 | 2.015 | 1.476 | 0.727 |\n", "| 6 | 3.707 | 3.143 | 2.447 | 1.943 | 1.440 | 0.718 |\n", "| 7 | 3.499 | 2.998 | 2.365 | 1.895 | 1.415 | 0.711 |\n", "| 8 | 3.355 | 2.896 | 2.306 | 1.860 | 1.397 | 0.706 |\n", "| 9 | 3.250 | 2.821 | 2.262 | 1.833 | 1.383 | 0.703 |\n", "| 10 | 3.169 | 2.764 | 2.228 | 1.812 | 1.372 | 0.700 |\n", "| 15 | 2.947 | 2.602 | 2.131 | 1.753 | 1.341 | 0.691 |\n", "| 20 | 2.845 | 2.528 | 2.086 | 1.725 | 1.325 | 0.687 |\n", "| 25 | 2.787 | 2.485 | 2.060 | 1.708 | 1.316 | 0.684 |\n", "| 30 | 2.750 | 2.457 | 2.042 | 1.697 | 1.310 | 0.683 |\n", "| $\\infty$ | 2.576 | 2.326 | 1.960 | 1.645 | 1.282 | 0.674 |" ] }, { "cell_type": "markdown", "id": "ae6388de-e778-4290-b238-cb78222b4969", "metadata": { "tags": [] }, "source": [ "----\n", "\n", "## Part III: The Parkfield Prediction\n", "\n", "It is important to realize that the general observation that earthquakes recur on individual faults can be the result of many physical realities. The simple ‘sawtooth’ earthquake cycle model may be attractive because of its simplicity, but its validity has to be confirmed by observational data. This model has come under a great deal of criticism lately, because its predictions for the locations of earthquakes over the past 20 years along the Pacific rim have not been very successful. " ] }, { "cell_type": "markdown", "id": "26b313cd-8072-4059-aa11-03bea6920492", "metadata": {}, "source": [ "" ] }, { "cell_type": "markdown", "id": "a2dfd3a9-849a-4e80-b9ec-53b06d3a7a6c", "metadata": { "tags": [] }, "source": [ "The purpose of this problem is to illustrate how probabilistic forecasts are made by calculating the likely time for next Parkfield earthquake using statistics.\n", "\n", "*Background*: The National Earthquake Prediction Evaluation Council (NEPEC) in 1985 endorsed a prediction that with 95% confidence (= probability), the next Parkfield earthquake would occur\n", "before January 1993." ] }, { "cell_type": "markdown", "id": "42104e46-25f6-4faa-aa1f-5a1f56562c1a", "metadata": {}, "source": [ "" ] }, { "cell_type": "markdown", "id": "a0585467-276c-4ae2-a7cd-35332dd137f4", "metadata": { "tags": [] }, "source": [ "*The Data*: At the time, most seismologists agreed that earthquakes of very similar size and character (that is, which ruptured the same part of the San Andreas Fault) have occurred near Parkfield at the following times: 1857, 1881, 1901, 1922, 1934, and 1966. There is no record of earthquake activity before 1857, but we do not expect there to be one because the area was not settled at that time.\n", "\n", "In order to calculate expectations and probabilities, you have to have a model in mind which tells you what the data above represent. It is not clear which model is most appropriate, and you may think of a better one than the following:\n", "\n", "*Approach 1 — strictly numbers.* The sequence clearly suggests a repetition with approximately the same interval between events. If we think of the intervals between earthquakes as belonging to a normal distribution with some mean, the data can be used to estimate both an average repeat time and a standard deviation around that mean." ] }, { "cell_type": "markdown", "id": "6803ef1f-ead5-41ee-b99d-6d9d2a6cadae", "metadata": {}, "source": [ "**Question 3.1** Calculate the mean value and the standard deviation for the earthquake repeat times. *Hint:* Create a numpy array for `years = np.array([1857, 1881, 1901, 1922, 1934, 1966])` and use standard numpy functions." ] }, { "cell_type": "markdown", "id": "74cdd789-e760-462a-87dc-5d6704770243", "metadata": {}, "source": [ "**Answer:**" ] }, { "cell_type": "markdown", "id": "e0780d76-d27e-4522-879a-5834ee20e8f8", "metadata": {}, "source": [ "

\n", "

" ] }, { "cell_type": "markdown", "id": "3cd0f9ec-5c28-4d75-941a-1901006ff3b5", "metadata": {}, "source": [ "**Question 3.2** Based on the values derived above, what is the predicted (i.e. most likely) time for an earthquake to occur following the 1966 earthquake ?" ] }, { "cell_type": "markdown", "id": "f81b94bf-e673-4231-a5b4-e731fbb7e079", "metadata": {}, "source": [ "**Answer:**" ] }, { "cell_type": "markdown", "id": "938b4007-28cf-48f8-a540-79fd6dbe8ef8", "metadata": {}, "source": [ "

\n", "

" ] }, { "cell_type": "markdown", "id": "e1110b28-8a0d-4c44-b1a0-5bf13198e489", "metadata": {}, "source": [ "**Question 3.3** What is the time before which there is a 95% probability that the earthquake will occur? *Hint:* Since there are very few observations, you need to know something about Student’s t-distributions to answer this question. See **mini-tutorial** above." ] }, { "cell_type": "markdown", "id": "a27f9f51-cbc7-4745-912d-567acbcd8ee1", "metadata": {}, "source": [ "**Answer:**" ] }, { "cell_type": "markdown", "id": "7db04290-2035-4d69-b306-08efff57fc23", "metadata": {}, "source": [ "

\n", "

" ] }, { "cell_type": "markdown", "id": "d87c0b61-c9fd-460f-a06b-c86df561d092", "metadata": {}, "source": [ "*Approach 2 — using some ‘insights’.* Assume that the 1934 earthquake really should have occurred in 1944, but that it for some reason was ‘triggered’ to occur prematurely by some other geophysical process." ] }, { "cell_type": "markdown", "id": "bdd50d83-613e-437f-9432-afaa1b13a44a", "metadata": {}, "source": [ "**Question 3.4** Repeat the analysis for mean and standard deviation but assume that the 1934 event really occurred in 1944. " ] }, { "cell_type": "markdown", "id": "abf1da3d-67b5-4274-b869-42ddfb507599", "metadata": {}, "source": [ "**Answer:**" ] }, { "cell_type": "markdown", "id": "da2a1887-3b60-4b9f-82d7-7a8e28df4960", "metadata": {}, "source": [ "

\n", "

" ] }, { "cell_type": "markdown", "id": "5f1c9cf2-0f7a-49da-a604-8258ff53561e", "metadata": {}, "source": [ "**Question 3.5** Which approach appears to be closest to the one used by the NEPEC? If we were uncertain about the correctness of different approaches to interpreting the data (for example Approaches 1 and 2 above) how might one incorporate these uncertainties in the probability estimates?" ] }, { "cell_type": "markdown", "id": "febfa9e3-d60f-486b-95a0-97612ee69479", "metadata": {}, "source": [ "**Answer:**" ] }, { "cell_type": "markdown", "id": "2e1e7b2c-1e2a-4c7f-9e96-413e58de2f77", "metadata": {}, "source": [ "

\n", "

" ] }, { "cell_type": "markdown", "id": "9d8c8bac-ea78-4ba3-9d12-72f92da4609a", "metadata": {}, "source": [ "**Question 3.6** The long-awaited Parkfield earthquake finally occurred on September 28, 2004! Include the 2004 data point to \n", "\n", "(a) Re-calculate the mean value and standard deviation for the earthquake repeat time with this year.\n", "\n", "(b) Predict the year for the next Parkfield earthquake with 95 % probability." ] }, { "cell_type": "markdown", "id": "9fde297e-64d4-49a6-9924-63285c915104", "metadata": {}, "source": [ "**Answer:**" ] }, { "cell_type": "markdown", "id": "db485bd4-1d29-45c6-aa4f-d09d4559fb6a", "metadata": {}, "source": [ "

\n", "

" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 5 }